Skip to main content

Cloud Computing for Fluorescence Correlation Spectroscopy Simulations

  • Conference paper
  • First Online:
High Performance Computing (CARLA 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 565))

Included in the following conference series:

  • 287 Accesses

Abstract

Fluorescence microscopy techniques and protein labeling set an inflection point in the way cells are studied. The fluorescence correlation spectroscopy is extremely useful for quantitatively measuring the movement of molecules in living cells. This article presents the design and implementation of a system for fluorescence analysis through stochastic simulations using distributed computing techniques over a cloud infrastructure. A highly scalable architecture, accessible to many users, is proposed for studying complex cellular biological processes. A MapReduce algorithm that allows the parallel execution of multiple simulations is developed over a distributed Hadoop cluster using the Microsoft Azure cloud platform. The experimental analysis shows the correctness of the implementation developed and its utility as a tool for scientific computing in the cloud.

This project has been partially supported by the Microsoft Azure for Research Award.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angiolini, J., Plachta, N., Mocskos, E., Levi, V.: Exploring the dynamics of cell processes through simulations of fluorescence microscopy experiments. Biophys. J. 108, 2613–2618 (2015)

    Article  Google Scholar 

  2. Bartol, T., Land, B., Salpeter, E., Salpeter, M.: Monte carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. Biophys. J. 59(6), 1290–1307 (1991)

    Article  Google Scholar 

  3. Buyya, R., Broberg, J., Goscinski, A.: Cloud Computing: Principles and Paradigms. Wiley, New York (2011)

    Book  Google Scholar 

  4. Da Silva, M., Nesmachnow, S., Geier, M., Mocskos, E., Angiolini, J., Levi, V., Cristobal, A.: Efficient fluorescence microscopy analysis over a volunteer grid/cloud infrastructure. In: Hernández, G., Barrios Hernández, C.J., Díaz, G., García Garino, C., Nesmachnow, S., Pérez-Acle, T., Storti, M., Vázquez, M. (eds.) CARLA 2014. CCIS, vol. 485, pp. 113–127. Springer, Heidelberg (2014)

    Google Scholar 

  5. Elson, E.L.: Fluorescence correlation spectroscopy: past, present, future. Biophys. J. 101(12), 2855–2870 (2011)

    Article  Google Scholar 

  6. García, S., Iturriaga, S., Nesmachnow, S.: Scientific computing in the Latin America-Europe GISELA grid infrastructure. In: Proceedings of the 4th High Performance Computing Latin America Symposium, pp. 48–62 (2011)

    Google Scholar 

  7. Jakovits, P., Srirama, S.: Adapting scientific applications to cloud by using distributed computing frameworks. In: IEEE International Symposium on Cluster Computing and the Grid, pp. 164–167 (2013)

    Google Scholar 

  8. Kerr, R., Bartol, T., Kaminsky, B., Dittrich, M., Chang, J., Baden, S., Sejnowski, T., Stiles, J.: Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces. SIAM J. Sci. Comput. 30(6), 3126–3149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, H.: Introducing Windows Azure. Apress, Berkely (2009)

    Book  Google Scholar 

  10. Richman, R., Zirnhelt, H., Fix, S.: Large-scale building simulation using cloud computing for estimating lifecycle energy consumption. Can. J. Civ. Eng. 41, 252–262 (2014)

    Article  Google Scholar 

  11. Stiles, J.R., Bartol, T.M.: Monte Carlo methods for simulating realistic synaptic microphysiology using MCell, Chap. 4, pp. 87–127. CRC Press (2001)

    Google Scholar 

  12. Stiles, J.R., Van Helden, D., Bartol, T.M., Salpeter, E.E., Salpeter, M.M.: Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle. Proc. Natl. Acad. Sci. USA 93(12), 5747–5752 (1996)

    Article  Google Scholar 

  13. Velte, T., Velte, A., Elsenpeter, R.: Cloud Computing, A Practical Approach. McGraw-Hill Education, New York (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Mocskos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Marroig, L., Riverón, C., Nesmachnow, S., Mocskos, E. (2015). Cloud Computing for Fluorescence Correlation Spectroscopy Simulations. In: Osthoff, C., Navaux, P., Barrios Hernandez, C., Silva Dias, P. (eds) High Performance Computing. CARLA 2015. Communications in Computer and Information Science, vol 565. Springer, Cham. https://doi.org/10.1007/978-3-319-26928-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26928-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26927-6

  • Online ISBN: 978-3-319-26928-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics