Skip to main content

On the Performance of Indoor Ultra-Dense Networks for Millimetre-Wave Cellular Systems

  • Conference paper
  • First Online:
Mobile Networks and Management (MONAMI 2015)

Abstract

The combination of Ultra-Dense Networks  (UDN) and millimetre Waves (mmW) communications has recently been recognized by the industry and research community as a promising solution to cope with the evolving requirements of the fifth generation (5G) of cellular networks. Indeed, the problem of capacity provisioning has drawn the attention to mmW due to the spectrum scarcity at lower frequency bands. Additionally, the densification process has already started with the introduction of the well-known Heterogeneous Networks (HetNets).Thus the use of UDN is another natural approach for increasing the overall network capacity, especially in such indoor environments where high data rates and service demand are expected. In this paper, the combination of the previous paradigms is analysed by means of comprehensive system-level simulations. Unfortunately, the particularities of indoor deployments make radio propagation difficult to predict and limit the macro-cell coverage, hence these simulations have been evaluated using advanced Ray Tracing (RT) techniques. Results confirm the superior system performance of the mmW and UDN tandem with respect to current operating bands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ericsson, A.B.: More than 50 billion connected devices. In: Ericsson White Paper, February 2011. www.ericsson.com

  2. Ericsson A,B.: Networked society essentials (2014). www.ericsson.com/thinkingahead/

  3. Cisco Systems Inc.: Cisco visual networking index: global mobile data traffic forecast update, 2014–2019. In: Cisco White Paper, February 2015. www.cisco.com

  4. GSMA Intelligence: The mobile economy 2015. In: GSMA Reports (2015). www.gsmaintelligence.com

  5. Nokia Solutions and Networks Oy.: Ten key rules of 5G deployment. In: Nokia White Paper (2015). http://networks.nokia.com/innovation/5g

  6. The METIS 2020 Project: Mobile and wireless communications enablers for the twenty-twenty information society. In: Deliverable D6.5, Report on Simulation Results and Evaluations, March 2015. www.metis2020.com

  7. Chen, S., Zhao, J.: The requirements, challenges, and technologies for 5g of terrestrial mobile telecommunication. IEEE Commun. Mag. 52(5), 36–43 (2014)

    Article  Google Scholar 

  8. Nikolikj, V., Janevski, T.: Profitability and comparative cost-capacity analysis of 5G millimeter-wave systems. In: 22nd IEEE Telecommunications Forum (2014)

    Google Scholar 

  9. Radiocommunication Sector of ITU: Future spectrum requirements estimate for terrestial IMT. In: International Telecommunication Union (ITU), M.2290-0 (2014)

    Google Scholar 

  10. Andrews, J., Buzzi, S., Choi, W., Hanly, S., Lozano, A., Soong, A., Zhang, J.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)

    Article  Google Scholar 

  11. Osseiran, A., et al.: Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun. Mag. 52(5), 26–35 (2014)

    Article  Google Scholar 

  12. Boccardi, F., Heath Jr., R.W., Lozano, A., Marzetta, T.L., Popovski, P.: Five disruptive technology directions for 5G. IEEE Commun. Mag. 52(2), 74–80 (2014)

    Article  Google Scholar 

  13. Wei, L., Hu, R.Q., Qian, Y., Wu, G.: Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wirel. Commun. 21(6), 136–143 (2014)

    Article  Google Scholar 

  14. Larsson, C., Harrysson, F., Olsson, B.-E., Berg, J.-E.: An outdoor-to-Indoor Propagation Scenario at 28 GHz. In: 8th European Conference on Antennas and Propagation (EuCAP 2014), April 2014

    Google Scholar 

  15. Anderson, C., Rappaport, T., Bae, K., Verstak, A., Ramakrishnan, N., Tranter, W., Shaffer, C., Watson, L.: In-building wideband multipath characteristics at 2.5 and 60 GHz. In: 56th IEEE Vehicular Technology Conference 2002 (VTC 2002F) (2002)

    Google Scholar 

  16. Baykas, T., Materum, L., Kato, S.: Performance evaluation of mmwave single carrier systems with a novel NLOS channel model. In: 24th IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), September 2013

    Google Scholar 

  17. Larew, S., Thomas, T., Cudak, M., Ghosh, A.: Air interface design and ray tracing study for 5G millimeter wave communications. In: 2013 IEEE Global Communications Conference Workshops, December 2013

    Google Scholar 

  18. Bai, T., Heath, R.: Coverage analysis for millimeter wave cellular networks with blockage effects. In: 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP), December 2013

    Google Scholar 

  19. Kulkarni, M.-N., Thomas, T.-A., Vook, F.-W., Ghosh, A., Visotsky, E.: Coverage and rate trends in moderate and high bandwidth 5G networks. In: 2014 IEEE Globecom Workshop, Mobile Communications in Higher Frequency Bands (2014)

    Google Scholar 

  20. Bai, T., Heath, R.: Coverage analysis for millimeter-wave cellular networks. IEEE Trans. Wirel. Commun. 14(2), 1100–1114 (2015)

    Article  Google Scholar 

  21. Bai, T., Desai, V., Heath, R.: Millimiter wave cellular channel models for system evaluation. In: 2014 IEEE International Conference on Computing, Networking and Communications (2014)

    Google Scholar 

  22. Galinina, O., Pyattaev, A., Andreev, S., Dohler, M., Koucheryavy, Y.: 5G multi-RAT LTE-WiFi ultra-dense small cells: performance dynamics, architecture, and trends. IEEE J. Sel. Areas Commun. (2015)

    Google Scholar 

  23. Zhou, C., Bulakci, O.: Stability-aware and energy efficient cell management in ultra dense networks. In: 2014 IEEE 80th Vehicular Technology Conference (VTC Fall), September 2014

    Google Scholar 

  24. Koudouridis, G.-P.: On the capacity and energy efficiency of network scheduling in future ultra-dense networks. In: 2014 IEEE Symposium on Computers and Communications (ISCC), June 2014

    Google Scholar 

  25. Baldemair, R., Irnich, T., Balachandran, K., Dahlman, E., Mildh, G., Selén, Y., Parkvall, S., Meyer, M., Osseiran, A.: Ultra-dense networks in millimeter-wave frequencies. IEEE Commun. Mag. 53, 202–208 (2015)

    Article  Google Scholar 

  26. Lamas, S.R., González G.D., Hämäläinen, J.: Indoor planning optimization of ultra-dense cellular networks at high carrier frequencies. In: 2015 IEEE Wireless Communications and Networking Conference (WCNC) Workshops, March 2015

    Google Scholar 

  27. Chuang, M., Chen, M., Sun, Y.S.: Resource management issues in 5G ultra dense smallcell networks. In: 2015 International Conference on Information Networking (ICOIN), January 2015

    Google Scholar 

  28. Jiming, C., Peng, W., Jie, Z.: Adaptive soft frequency reuse schemefor in-building dense femtocell networks. Chin. Commun. 10(1), 44–55 (2013)

    Article  Google Scholar 

  29. Akdeniz, M., Liu, Y., Samimi, M., Sun, S., Rangan, S., Rappaport, T., Erkip, E.: Millimeter wave channel modeling and cellular capacity evaluation. IEEE J. Sel. Areas Commun. 32(6), 1164–1179 (2014)

    Article  Google Scholar 

  30. Nassar, A.-T. et al.: Achievable RF coverage and system capacity using millimeter wave cellular technologies in 5G networks. In: 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–6, May 2014

    Google Scholar 

  31. Gomez, K., Goratti, L., Granelli, F., Rasheed, T.: A comparative study of scheduling disciplines in 5g systems for emergency communications. In: 2014 1st International Conference on 5G for Ubiquitous Connectivity (5GU), pp. 40–45 (2014)

    Google Scholar 

  32. González, G.D., Yanikomeroglu, H., Garcia-Lozano, M., Boque, S.R.: A novel multiobjective framework for cell switch-off in dense cellular networks. In: 2014 IEEE International Conference on Communications (ICC), pp. 2641–2647, June 2014

    Google Scholar 

  33. Rangan, S., et al.: Millimeter-wave cellular wireless networks: potentials and challenges. IEEE Proc. 102(3), 366–385 (2014)

    Article  Google Scholar 

  34. Trueman, C., Paknys, R., Zhao, J., Davis, D., Segal, B.: Ray tracing algorithm for indoor propagation. In: 16th Annual Review of Progress in Applied Computational Electromagnetics (2000)

    Google Scholar 

  35. Remley, K., Anderson, H., Weisshar, A.: Improving the accuracy of ray-tracing techniques for indoor propagation modeling. IEEE Trans. Veh. Technol. 49(6), 2350–2358 (2000)

    Article  Google Scholar 

  36. Group Radio Access Network: Small cell enhancements for E-UTRA and E-UTRAN. In: 3rd Generation Partnership Project (3GPP) Technical report (TR) 36.872 v12.1.0, Release 12, December 2013

    Google Scholar 

  37. Ikuno, J.-C., Wrulich, M., Rupp, M.: System level simulation of LTE networks. In: IEEE Transactions on Vehicular Technology, May 2010

    Google Scholar 

  38. Group Radio Access Network: Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) system scenarios. In: 3rd Generation Partnership Project (3GPP) Technical report (TR) 36.942 v12.0.0, Release 12, September 2014

    Google Scholar 

  39. Group Radio Access Network: Further Advancements for E-UTRA, Physical Layer Aspects. In: 3rd Generation Partnership Project (3GPP) Technical report (TR) 36.814, Release 9, March 2010

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by Academy of Finland under grant 284811 and by EIT (European Institute for Innovation and Technology) and ICT Labs through the EXAM project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saray Renilla Lamas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Lamas, S.R., González G., D., Hämäläinen, J. (2015). On the Performance of Indoor Ultra-Dense Networks for Millimetre-Wave Cellular Systems. In: Agüero, R., Zinner, T., García-Lozano, M., Wenning, BL., Timm-Giel, A. (eds) Mobile Networks and Management. MONAMI 2015. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 158. Springer, Cham. https://doi.org/10.1007/978-3-319-26925-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26925-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26924-5

  • Online ISBN: 978-3-319-26925-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics