Abstract
The chapter provides an overview about the fabrication of drug delivery systems with microfluidic devices. Different microfluidic approaches are presented, describing the basic fabrication principles and highlighting representative examples. Diffusive mixing is preferentially used for controlled precipitation of small particles down to nanometer size. Particles can be collected in suspension or directly be spray dried with specific devices. Emulsion-based approaches are utilized for direct use of liquid emulsions and as templates for semisolid or solid systems ranging from polymer particles and hydrogels up to complex capsules and vesicles. In addition, scale-up approaches for microfluidic devices and recent development of delivery systems based on microfluidic devices for attachment to or implantation into the human body for controlled drug delivery over longer time intervals are presented. Finally, a future perspective is given discussing advantages and challenges of microfluidic approaches for safe and effective drug delivery.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75(23):6544–6554
Wagner V, Dullaart A, Bock A, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24:1211–1218
Couvreur P (2013) Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev 65(1):21–23
Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, Langer R, Farokhzad OC (2008) Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8(9):2906–2912
Anton N, Bally F, Serra CA, Ali A, Arntz Y, Mely Y, Zhao M, Marchioni E, Jakhmola A, Vandamme TF (2012) A new microfluidic setup for precise control of the polymer nanoprecipitation process and lipophilic drug encapsulation. Soft Matter 8:10628–10635
Koh CG, Kang X, Xie Y, Fei Z, Guan J, Yu B, Zhang X, Lee LJ (2009) Delivery of polyethylenimine/DNA complexes assembled in a microfluidics device. Mol Pharm 6(5):1333–1342
Chen D, Love KT, Chen Y, Eltoukhy AA, Kastrup C, Sahay G, Jeon A, Dong Y, Whitehead KA, Anderson DG (2012) Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J Am Chem Soc 134(16):6948–6951
Thiele J, Windbergs M, Abate AR, Trebbin M, Shum HC, Förster S, Weitz DA (2011) Early development drug formulation on a chip: Fabrication of nanoparticles using a microfluidic spray dryer. Lab Chip 11(14):2362–2368
Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373
Utada AS, Lorenceau E, Link D, Kaplan P, Stone HW, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541
Choi CH, Jung JH, Rhee YW, Kim DP, Shim SE, Lee CS (2007) Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed Microdevices 9(6):855–862
Yi GR, Thorsen T, Manoharan VN, Hwang MJ, Jeon SJ, Pine DJ, Quake SR, Yang SM (2003) Generation of uniform colloidal assemblies in soft microfluidic devices. Adv Mater 15:1300–1304
Yeh CH, Chen KR, Lin YC (2013) Developing heatable microfluidic chip to generate gelatin emulsions and microcapsules. Microfluid Nanofluid 15:775–784
Eun YJ, Utada AS, Copeland MF, Takeuchi S, Weibel DB (2010) Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chem Biol 6(3):260–266
Capretto L, Mazzitelli S, Nastruzzi C (2012) Design, production and optimization of solid lipid microparticles (SLM) by a coaxial microfluidic device. J Control Release 160(3):409–417
Kesselman LR, Shinwary S, Selvaganapathy PR, Hoare T (2012) Synthesis of monodisperse, covalently cross-linked, degradable “smart” microgels using microfluidics. Small 8(7):1092–1098
Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM (2005) Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew Chem Int Ed Engl 44(5):724–728
Huang KS, Lai TH, Lin CY (2006) Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles. Lab Chip 6(7):954–957
Yang CH, Huang KS, Chang JY (2007) Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip. Biomed Microdevices 9(2):253–259
Ogonczyk D, Siek M, Garstecki P (2011) Microfluidic formulation of pectin microbeads for encapsulation and controlled release of nanoparticles. Biomicrofluidics 5:013405–013412
Windbergs M, Zhao Y, Heyman J, Weitz DA (2013) Biodegradable core-shell carriers for simultaneous encapsulation of synergistic actives. J Am Chem Soc 135:7933–7937
Jahn A, Stavis SM, Hong JS, Vreeland WN, DeVoe DL, Gaitan M (2010) Microfluidic mixing and the formation of nanoscale lipid vesicles. ACS Nano 4(4):2077–2087
Hood RR, Shao C, Omiatek DM, Vreeland WN, DeVoe DL (2013) Microfluidic synthesis of PEG and folate-conjugated liposomes for one-step formation of targeted stealth nanocarriers. Pharm Res 30(6):1597–1607
Amstad E, Kim SH, Weitz DA (2012) Photo- and thermoresponsive polymersomes for triggered release. Angew Chem Int Ed 51(50):12499–12503
Yobas L, Martens S, Ong WL, Ranganathan N (2006) High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 6(8):1073–1079
Holtze C (2013) Large-scale droplet production in microfluidic devices—an industrial perspective. J Phys D Appl Phys 46:114008
Nisisako T, Torii T (2008) Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8(2):287–293
Abate AR, Weitz DA (2011) Faster multiple emulsification with drop splitting. Lab Chip 11(11):1911–1915
Romanowsky MB, Abate AR, Rotem A, Holtze C, Weitz DA (2012) High throughput production of single core double emulsions in a parallelized microfluidic device. Lab Chip 12(4):802–807
Lo R, Li PY, Saati S, Agrawal RN, Humayun MS, Meng E (2009) A passive MEMS drug delivery pump for treatment of ocular diseases. Biomed Microdevices 11(5):959–970
Pirmoradi FN, Jackson JK, Burt HM, Chiao M (2011) On-demand controlled release of docetaxel from a battery-less MEMS drug delivery device. Lab Chip 11(16):2744–2752
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Windbergs, M. (2016). On-Chip Fabrication of Drug Delivery Systems. In: Dietzel, A. (eds) Microsystems for Pharmatechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-26920-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-26920-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26918-4
Online ISBN: 978-3-319-26920-7
eBook Packages: EngineeringEngineering (R0)