Skip to main content

On-Chip Fabrication of Drug Delivery Systems

  • Chapter
  • First Online:
Microsystems for Pharmatechnology

Abstract

The chapter provides an overview about the fabrication of drug delivery systems with microfluidic devices. Different microfluidic approaches are presented, describing the basic fabrication principles and highlighting representative examples. Diffusive mixing is preferentially used for controlled precipitation of small particles down to nanometer size. Particles can be collected in suspension or directly be spray dried with specific devices. Emulsion-based approaches are utilized for direct use of liquid emulsions and as templates for semisolid or solid systems ranging from polymer particles and hydrogels up to complex capsules and vesicles. In addition, scale-up approaches for microfluidic devices and recent development of delivery systems based on microfluidic devices for attachment to or implantation into the human body for controlled drug delivery over longer time intervals are presented. Finally, a future perspective is given discussing advantages and challenges of microfluidic approaches for safe and effective drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75(23):6544–6554

    Article  Google Scholar 

  2. Wagner V, Dullaart A, Bock A, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24:1211–1218

    Article  Google Scholar 

  3. Couvreur P (2013) Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev 65(1):21–23

    Article  Google Scholar 

  4. Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, Langer R, Farokhzad OC (2008) Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8(9):2906–2912

    Article  Google Scholar 

  5. Anton N, Bally F, Serra CA, Ali A, Arntz Y, Mely Y, Zhao M, Marchioni E, Jakhmola A, Vandamme TF (2012) A new microfluidic setup for precise control of the polymer nanoprecipitation process and lipophilic drug encapsulation. Soft Matter 8:10628–10635

    Article  Google Scholar 

  6. Koh CG, Kang X, Xie Y, Fei Z, Guan J, Yu B, Zhang X, Lee LJ (2009) Delivery of polyethylenimine/DNA complexes assembled in a microfluidics device. Mol Pharm 6(5):1333–1342

    Article  Google Scholar 

  7. Chen D, Love KT, Chen Y, Eltoukhy AA, Kastrup C, Sahay G, Jeon A, Dong Y, Whitehead KA, Anderson DG (2012) Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J Am Chem Soc 134(16):6948–6951

    Article  Google Scholar 

  8. Thiele J, Windbergs M, Abate AR, Trebbin M, Shum HC, Förster S, Weitz DA (2011) Early development drug formulation on a chip: Fabrication of nanoparticles using a microfluidic spray dryer. Lab Chip 11(14):2362–2368

    Article  Google Scholar 

  9. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  10. Utada AS, Lorenceau E, Link D, Kaplan P, Stone HW, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541

    Article  Google Scholar 

  11. Choi CH, Jung JH, Rhee YW, Kim DP, Shim SE, Lee CS (2007) Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed Microdevices 9(6):855–862

    Article  Google Scholar 

  12. Yi GR, Thorsen T, Manoharan VN, Hwang MJ, Jeon SJ, Pine DJ, Quake SR, Yang SM (2003) Generation of uniform colloidal assemblies in soft microfluidic devices. Adv Mater 15:1300–1304

    Article  Google Scholar 

  13. Yeh CH, Chen KR, Lin YC (2013) Developing heatable microfluidic chip to generate gelatin emulsions and microcapsules. Microfluid Nanofluid 15:775–784

    Article  Google Scholar 

  14. Eun YJ, Utada AS, Copeland MF, Takeuchi S, Weibel DB (2010) Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chem Biol 6(3):260–266

    Article  Google Scholar 

  15. Capretto L, Mazzitelli S, Nastruzzi C (2012) Design, production and optimization of solid lipid microparticles (SLM) by a coaxial microfluidic device. J Control Release 160(3):409–417

    Article  Google Scholar 

  16. Kesselman LR, Shinwary S, Selvaganapathy PR, Hoare T (2012) Synthesis of monodisperse, covalently cross-linked, degradable “smart” microgels using microfluidics. Small 8(7):1092–1098

    Article  Google Scholar 

  17. Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM (2005) Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew Chem Int Ed Engl 44(5):724–728

    Article  Google Scholar 

  18. Huang KS, Lai TH, Lin CY (2006) Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles. Lab Chip 6(7):954–957

    Article  Google Scholar 

  19. Yang CH, Huang KS, Chang JY (2007) Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip. Biomed Microdevices 9(2):253–259

    Article  Google Scholar 

  20. Ogonczyk D, Siek M, Garstecki P (2011) Microfluidic formulation of pectin microbeads for encapsulation and controlled release of nanoparticles. Biomicrofluidics 5:013405–013412

    Article  Google Scholar 

  21. Windbergs M, Zhao Y, Heyman J, Weitz DA (2013) Biodegradable core-shell carriers for simultaneous encapsulation of synergistic actives. J Am Chem Soc 135:7933–7937

    Article  Google Scholar 

  22. Jahn A, Stavis SM, Hong JS, Vreeland WN, DeVoe DL, Gaitan M (2010) Microfluidic mixing and the formation of nanoscale lipid vesicles. ACS Nano 4(4):2077–2087

    Article  Google Scholar 

  23. Hood RR, Shao C, Omiatek DM, Vreeland WN, DeVoe DL (2013) Microfluidic synthesis of PEG and folate-conjugated liposomes for one-step formation of targeted stealth nanocarriers. Pharm Res 30(6):1597–1607

    Article  Google Scholar 

  24. Amstad E, Kim SH, Weitz DA (2012) Photo- and thermoresponsive polymersomes for triggered release. Angew Chem Int Ed 51(50):12499–12503

    Article  Google Scholar 

  25. Yobas L, Martens S, Ong WL, Ranganathan N (2006) High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 6(8):1073–1079

    Article  Google Scholar 

  26. Holtze C (2013) Large-scale droplet production in microfluidic devices—an industrial perspective. J Phys D Appl Phys 46:114008

    Article  Google Scholar 

  27. Nisisako T, Torii T (2008) Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8(2):287–293

    Article  Google Scholar 

  28. Abate AR, Weitz DA (2011) Faster multiple emulsification with drop splitting. Lab Chip 11(11):1911–1915

    Article  Google Scholar 

  29. Romanowsky MB, Abate AR, Rotem A, Holtze C, Weitz DA (2012) High throughput production of single core double emulsions in a parallelized microfluidic device. Lab Chip 12(4):802–807

    Article  Google Scholar 

  30. Lo R, Li PY, Saati S, Agrawal RN, Humayun MS, Meng E (2009) A passive MEMS drug delivery pump for treatment of ocular diseases. Biomed Microdevices 11(5):959–970

    Article  Google Scholar 

  31. Pirmoradi FN, Jackson JK, Burt HM, Chiao M (2011) On-demand controlled release of docetaxel from a battery-less MEMS drug delivery device. Lab Chip 11(16):2744–2752

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Windbergs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Windbergs, M. (2016). On-Chip Fabrication of Drug Delivery Systems. In: Dietzel, A. (eds) Microsystems for Pharmatechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-26920-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26920-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26918-4

  • Online ISBN: 978-3-319-26920-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics