Synthesising Robust and Optimal Parameters for Cardiac Pacemakers Using Symbolic and Evolutionary Computation Techniques

  • Marta Kwiatkowska
  • Alexandru Mereacre
  • Nicola Paoletti
  • Andrea Patanè
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9271)


We consider the problem of automatically finding safe and robust values of timing parameters of cardiac pacemaker models so that a quantitative objective, such as the pacemaker energy consumption or its cardiac output (a heamodynamic indicator of the human heart), is optimised in a finite path. The models are given as parametric networks of timed I/O automata with data, which extend timed I/O automata with priorities, real variables and real-valued functions, and specifications as Counting Metric Temporal Logic (CMTL) formulas. We formulate the parameter synthesis as a bilevel optimisation problem, where the quantitative objective (the outer problem) is optimised in the solution space obtained from optimising an inner problem that yields the maximal robustness for any parameter of the model. We develop an SMT-based method for solving the inner problem through a discrete encoding, and combine it with evolutionary algorithms and simulations to solve the outer optimisation task. We apply our approach to the composition of a (non-linear) multi-component heart model with the parametric dual chamber pacemaker model in order to find the values of multiple timing parameters of the pacemaker for different heart diseases.


Safety Property Cardiac Pacemaker Satisfiability Modulo Theory Bound Model Check Evolutionary Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the ERC AdG VERIWARE and ERC PoC VERIPACE.


  1. 1.
    André, É., Chatain, T., Fribourg, L., Encrenaz, E.: An inverse method for parametric timed automata. Int. J. Found. Comput. Sci. 20(05), 819–836 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    André, É., Fribourg, L.: Behavioral cartography of timed automata. In: Kučera, A., Potapov, I. (eds.) Reachability Problems. LNCS, vol. 6227, pp. 76–90. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Arai, T., Lee, K., Cohen, R.J.: Cardiac output and stroke volume estimation using a hybrid of three windkessel models. In: EMBC, pp. 4971–4974. IEEE (2010)Google Scholar
  4. 4.
    Armando, A., Mantovani, J., Platania, L.: Bounded model checking of software using SMT solvers instead of SAT solvers. STTT 11(1), 69–83 (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    Barbot, B., Kwiatkowska, M., Mereacre, A., Paoletti, N.: Estimation and verification of hybrid heart models for personalised medical and wearable devices. In: Roux, O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 3–7. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  6. 6.
    Beyer, H.-G., Schwefel, H.-P.: Evolution strategies-a comprehensive introduction. Nat. Comput. 1(1), 3–52 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric timed automata. FMSD 35(2), 121–151 (2009)zbMATHGoogle Scholar
  8. 8.
    Bruyère, V., Raskin, J.-F.: Real-time model-checking: parameters everywhere. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 100–111. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: Quantitative verification of implantable cardiac pacemakers over hybrid heart models. Inf. Comput. 236, 87–101 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cimatti, A., Mover, S., Tonetta, S.: SMT-based verification of hybrid systems. In: Hoffmann, J., Selman, B. (eds.) Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, 22–26 July 2012, Toronto, Ontario, Canada. AAAI Press (2012)Google Scholar
  11. 11.
    Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann. Oper. Res. 153(1), 235–256 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2), 311–338 (2000)CrossRefzbMATHGoogle Scholar
  15. 15.
    Diciolla, M., Kim, C.H.P., Kwiatkowska, M., Mereacre, A.: Synthesising optimal timing delays for timed I/O automata. In: EMSOFT 2014. ACM (2014)Google Scholar
  16. 16.
    Doyen, L.: Robust parametric reachability for timed automata. Inf. Process. Lett. 102(5), 208–213 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fazeli, N., Hahn, J.-O.: Estimation of cardiac output and peripheral resistance using square-wave-approximated aortic flow signal. Front. Physiol 3, 736–743 (2012)CrossRefGoogle Scholar
  18. 18.
    Gao, S., Kong, S., Clarke, E.M.: Satisfiability modulo ODEs. In: Formal Methods in Computer-Aided Design (FMCAD), pp. 105–112. IEEE (2013)Google Scholar
  19. 19.
    Gomes, A.O., Oliveira, M.V.M.: Formal specification of a cardiac pacing system. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 692–707. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 190–203. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Jiang, Z., Pajic, M., Moarref, S., Alur, R., Mangharam, R.: Modeling and verification of a dual chamber implantable pacemaker. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 188–203. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Jovanović, A., Kwiatkowska, M.: Parameter synthesis for probabilistic timed automata using stochastic game abstractions. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) RP 2014. LNCS, vol. 8762, pp. 176–189. Springer, Heidelberg (2014)Google Scholar
  23. 23.
    Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed automata. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 401–415. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  24. 24.
    Kerner, D.R.: Solving windkessel models with mlab (2007).
  25. 25.
    Kindermann, R., Junttila, T., Niemelä, I.: Beyond lassos: complete SMT-based bounded model checking for timed automata. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and FMOODS 2012. LNCS, vol. 7273, pp. 84–100. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    Kindermann, R., Junttila, T., Niemelä, I.: SMT-based induction methods for timed systems. In: Jurdziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595, pp. 171–187. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
    Knapik, M., Penczek, W.: Bounded model checking for parametric timed automata. In: Jensen, K., Donatelli, S., Kleijn, J. (eds.) ToPNoC V. LNCS, vol. 6900, pp. 141–159. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  28. 28.
    Kovásznai, G., Fröhlich, A., Biere, A.: On the complexity of fixed-size bit-vector logics with binary encoded bit-width. In: SMT, pp. 44–56 (2012)Google Scholar
  29. 29.
    Kwiatkowska, M., Lea-Banks, H., Mereacre, A., Paoletti, N.: Formal modelling and validation of rate-adaptive pacemakers. In: ICHI, pp. 23–32. IEEE (2014)Google Scholar
  30. 30.
    Kwiatkowska, M., Mereacre, A., Paoletti, N., Patanè, A.: Synthesising robust and optimal parameters for cardiac pacemakers using symbolic and evolutionary computation techniques. Technical Report RR-15-09, Department of Computer Science, University of Oxford (2015)Google Scholar
  31. 31.
    Lian, J., Krätschmer, H., Müssig, D., Stotts, L.: Open source modeling of heart rhythm and cardiac pacing. Open Pacing Electrophysiol. Ther. J. 3, 4 (2010)Google Scholar
  32. 32.
    Méry, D., Singh, N.K.: Closed-loop modeling of cardiac pacemaker and heart. In: Weber, J., Perseil, I. (eds.) FHIES 2012. LNCS, vol. 7789, pp. 151–166. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  33. 33.
    Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Science, LICS 2005, pp. 188–197. IEEE (2005)Google Scholar
  34. 34.
    Rabinovich, A.: Complexity of metric temporal logics with counting and the pnueli modalities. Theor. Comput. Sci. 411(22), 2331–2342 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Rudolph, G.: An evolutionary algorithm for integer programming. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN III. LNCS, vol. 866, pp. 139–148. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  36. 36.
    Boston Scientific: Pacemaker System Specification. Boston Scientific, Boston (2007)Google Scholar
  37. 37.
    Sturm, T., Tiwari, A.: Verification and synthesis using real quantifier elimination. In: Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, pp. 329–336. ACM (2011)Google Scholar
  38. 38.
    Traonouez, L.-M.: A parametric counterexample refinement approach for robust timed specifications. arXiv preprint arXiv:1207.4269 (2012)

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marta Kwiatkowska
    • 1
  • Alexandru Mereacre
    • 1
  • Nicola Paoletti
    • 1
  • Andrea Patanè
    • 2
  1. 1.Department of Computer ScienceUniversity of OxfordOxfordUK
  2. 2.Department of Mathematics and Computer ScienceUniversity of CataniaCataniaItaly

Personalised recommendations