Skip to main content

High-Performance Discrete Bifurcation Analysis for Piecewise-Affine Dynamical Systems

Part of the Lecture Notes in Computer Science book series (LNBI,volume 9271)


Analysis of equilibria, their stability and instability, is an unavoidable ingredient of model analysis in systems biology. In particular, bifurcation analysis which focuses on behaviour of phase portraits under variations of parameters is of great importance. We propose a novel method for bifurcation analysis that employs coloured model checking to analyse phase portraits bifurcation in rectangular abstractions of piecewise-affine systems. The algorithm works on clusters of workstations and multi-core computers to allow scalability. We demonstrate the method on a repressilator genetic regulatory network.


  • Model Check
  • Phase Portrait
  • Atomic Proposition
  • Kripke Structure
  • Kinetic Function

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This work has been supported by the Czech Science Foundation grant No. GA15-11089S.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-26916-0_4
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-26916-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall/CRC Mathematical and Computational Biology, Boca Raton (2006)

    MATH  Google Scholar 

  2. Anishchenko, V.S., Vadivasova, T.E., Strelkova, G.I.: Deterministic Nonlinear Systems: A Short Course. Springer, Heidelberg (2014)

    CrossRef  MATH  Google Scholar 

  3. Bagley, R.J., Glass, L.: Counting and classifying attractors in high dimensional dynamical systems. J. Theor. Biol. 183(3), 269–284 (1996)

    CrossRef  Google Scholar 

  4. Batt, G., Belta, C., Weiss, R.: Model checking genetic regulatory networks with parameter uncertainty. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 61–75. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  5. Batt, G., Besson, B., Ciron, P.-E., de Jong, H., Dumas, E., Geiselmann, J., Monte, R., Monteiro, P.T., Page, M., Rechenmann, F., Ropers, D.: Genetic network analyzer: A tool for the qualitative modeling and simulation of bacterial regulatory networks. In: van Helden, J., Toussaint, A., Thieffry, D. (eds.) Bacterial Molecular Networks: Methods and Protocols. Methods in Molecular Biology, vol. 804, pp. 439–462. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  6. Belta, C., Habets, L.C.G.J.M.: Controlling a class of nonlinear systems on rectangles. IEEE Trans. Automat. Contr. 51(11), 1749–1759 (2006)

    CrossRef  MathSciNet  Google Scholar 

  7. Brim, L., Češka, M., Demko, M., Pastva, S., Šafránek, D.: Parameter synthesis by parallel coloured CTL model checking. In: Roux, O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 251–263. Springer, Heidelberg (2015)

    CrossRef  Google Scholar 

  8. Chaves, M., Tournier, L., Gouzé, J.-L.: Comparing boolean and piecewise affine differential models for genetic networks. Acta Biotherica 58(2–3), 217–232 (2010)

    CrossRef  Google Scholar 

  9. Collins, P., Habets, L.C.G.J.M., van Schuppen, J.H., Černá, I., Fabriková, J., Šafránek, D.: Abstraction of biochemical reaction systems on polytopes. In: IFAC World Congress, pp. 14869–14875. IFAC (2011)

    Google Scholar 

  10. de Jong, H., Page, M.: Search for steady states of piecewise-linear differential equation models of genetic regulatory networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 5(2), 208–222 (2008)

    CrossRef  Google Scholar 

  11. De Nicola, R., Vaandrager, F.: Three logics for branching bisimulation. In: Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science, pp. 118–129 (1990)

    Google Scholar 

  12. Dvorak, P., Bidmanova, S., Damborsky, J., Prokop, Z.: Immobilized synthetic pathway for biodegradation of toxic recalcitrant pollutant 1,2,3-trichloropropane. Environ. Sci. Technol. 48(12), 6859–6866 (2014)

    CrossRef  Google Scholar 

  13. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403(6767), 335–338 (2000)

    CrossRef  Google Scholar 

  14. Glass, L., Kauffman, S.A.: The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 39(1), 103–129 (1973)

    CrossRef  Google Scholar 

  15. Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A., Bartocci, E.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  16. Holzwarth, A.R., Müller, M.G., Reus, M., Nowaczyk, M., Sander, J., Rögner, M.: Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: Pheophytin is the primary electron acceptor. Proc. Nat. Acad. Sci. 103(18), 6895–6900 (2006)

    CrossRef  Google Scholar 

  17. Jamshidi, S., Siebert, H., Bockmayr, A.: Comparing discrete and piecewise affine differential equation models of gene regulatory networks. In: Lones, M.A., Smith, S.L., Teichmann, S., Naef, F., Walker, J.A., Trefzer, M.A. (eds.) IPCAT 2012. LNCS, vol. 7223, pp. 17–24. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  18. Jha, S., Shyamasundar, R.K.: Adapting biochemical Kripke structures for distributed model checking. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on computational systems biology vii. LNCS (LNBI), vol. 4230, pp. 107–122. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  19. De Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9, 67–103 (2002)

    CrossRef  Google Scholar 

  20. Müller, S., Hofbauer, J., Endler, L., Flamm, C., Widder, S., Schuster, P.: A generalized model of the repressilator. J. Math. Biol. 53(6), 905–937 (2006)

    CrossRef  MathSciNet  MATH  Google Scholar 

  21. Snoussi, E.H.: Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach. Dyn. Stab. Syst. 4(3–4), 565–583 (1989)

    CrossRef  MathSciNet  MATH  Google Scholar 

  22. Veliz-Cuba, A., Arthur, J., Hochstetler, L., Klomps, V., Korpi, E.: On the relationship of steady states of continuous and discrete models arising from biology. Bull. Math. Biol. 74(12), 2779–2792 (2012)

    CrossRef  MathSciNet  MATH  Google Scholar 

  23. Yordanov, B., Belta, C., Batt, G.: Model checking discrete time piecewise affine systems: application to gene networks. In: European Control Conference (ECC) (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to David Šafránek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Brim, L., Demko, M., Pastva, S., Šafránek, D. (2015). High-Performance Discrete Bifurcation Analysis for Piecewise-Affine Dynamical Systems. In: Abate, A., Šafránek, D. (eds) Hybrid Systems Biology. HSB 2015. Lecture Notes in Computer Science(), vol 9271. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26915-3

  • Online ISBN: 978-3-319-26916-0

  • eBook Packages: Computer ScienceComputer Science (R0)