Abstract
Analysis of equilibria, their stability and instability, is an unavoidable ingredient of model analysis in systems biology. In particular, bifurcation analysis which focuses on behaviour of phase portraits under variations of parameters is of great importance. We propose a novel method for bifurcation analysis that employs coloured model checking to analyse phase portraits bifurcation in rectangular abstractions of piecewise-affine systems. The algorithm works on clusters of workstations and multi-core computers to allow scalability. We demonstrate the method on a repressilator genetic regulatory network.
Keywords
- Model Check
- Phase Portrait
- Atomic Proposition
- Kripke Structure
- Kinetic Function
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This work has been supported by the Czech Science Foundation grant No. GA15-11089S.
This is a preview of subscription content, access via your institution.
Buying options






References
Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall/CRC Mathematical and Computational Biology, Boca Raton (2006)
Anishchenko, V.S., Vadivasova, T.E., Strelkova, G.I.: Deterministic Nonlinear Systems: A Short Course. Springer, Heidelberg (2014)
Bagley, R.J., Glass, L.: Counting and classifying attractors in high dimensional dynamical systems. J. Theor. Biol. 183(3), 269–284 (1996)
Batt, G., Belta, C., Weiss, R.: Model checking genetic regulatory networks with parameter uncertainty. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 61–75. Springer, Heidelberg (2007)
Batt, G., Besson, B., Ciron, P.-E., de Jong, H., Dumas, E., Geiselmann, J., Monte, R., Monteiro, P.T., Page, M., Rechenmann, F., Ropers, D.: Genetic network analyzer: A tool for the qualitative modeling and simulation of bacterial regulatory networks. In: van Helden, J., Toussaint, A., Thieffry, D. (eds.) Bacterial Molecular Networks: Methods and Protocols. Methods in Molecular Biology, vol. 804, pp. 439–462. Springer, Heidelberg (2012)
Belta, C., Habets, L.C.G.J.M.: Controlling a class of nonlinear systems on rectangles. IEEE Trans. Automat. Contr. 51(11), 1749–1759 (2006)
Brim, L., Češka, M., Demko, M., Pastva, S., Šafránek, D.: Parameter synthesis by parallel coloured CTL model checking. In: Roux, O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 251–263. Springer, Heidelberg (2015)
Chaves, M., Tournier, L., Gouzé, J.-L.: Comparing boolean and piecewise affine differential models for genetic networks. Acta Biotherica 58(2–3), 217–232 (2010)
Collins, P., Habets, L.C.G.J.M., van Schuppen, J.H., Černá, I., Fabriková, J., Šafránek, D.: Abstraction of biochemical reaction systems on polytopes. In: IFAC World Congress, pp. 14869–14875. IFAC (2011)
de Jong, H., Page, M.: Search for steady states of piecewise-linear differential equation models of genetic regulatory networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 5(2), 208–222 (2008)
De Nicola, R., Vaandrager, F.: Three logics for branching bisimulation. In: Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science, pp. 118–129 (1990)
Dvorak, P., Bidmanova, S., Damborsky, J., Prokop, Z.: Immobilized synthetic pathway for biodegradation of toxic recalcitrant pollutant 1,2,3-trichloropropane. Environ. Sci. Technol. 48(12), 6859–6866 (2014)
Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403(6767), 335–338 (2000)
Glass, L., Kauffman, S.A.: The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 39(1), 103–129 (1973)
Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A., Bartocci, E.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011)
Holzwarth, A.R., Müller, M.G., Reus, M., Nowaczyk, M., Sander, J., Rögner, M.: Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: Pheophytin is the primary electron acceptor. Proc. Nat. Acad. Sci. 103(18), 6895–6900 (2006)
Jamshidi, S., Siebert, H., Bockmayr, A.: Comparing discrete and piecewise affine differential equation models of gene regulatory networks. In: Lones, M.A., Smith, S.L., Teichmann, S., Naef, F., Walker, J.A., Trefzer, M.A. (eds.) IPCAT 2012. LNCS, vol. 7223, pp. 17–24. Springer, Heidelberg (2012)
Jha, S., Shyamasundar, R.K.: Adapting biochemical Kripke structures for distributed model checking. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on computational systems biology vii. LNCS (LNBI), vol. 4230, pp. 107–122. Springer, Heidelberg (2006)
De Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9, 67–103 (2002)
Müller, S., Hofbauer, J., Endler, L., Flamm, C., Widder, S., Schuster, P.: A generalized model of the repressilator. J. Math. Biol. 53(6), 905–937 (2006)
Snoussi, E.H.: Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach. Dyn. Stab. Syst. 4(3–4), 565–583 (1989)
Veliz-Cuba, A., Arthur, J., Hochstetler, L., Klomps, V., Korpi, E.: On the relationship of steady states of continuous and discrete models arising from biology. Bull. Math. Biol. 74(12), 2779–2792 (2012)
Yordanov, B., Belta, C., Batt, G.: Model checking discrete time piecewise affine systems: application to gene networks. In: European Control Conference (ECC) (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Brim, L., Demko, M., Pastva, S., Šafránek, D. (2015). High-Performance Discrete Bifurcation Analysis for Piecewise-Affine Dynamical Systems. In: Abate, A., Šafránek, D. (eds) Hybrid Systems Biology. HSB 2015. Lecture Notes in Computer Science(), vol 9271. Springer, Cham. https://doi.org/10.1007/978-3-319-26916-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-26916-0_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26915-3
Online ISBN: 978-3-319-26916-0
eBook Packages: Computer ScienceComputer Science (R0)