Abstract
The problem of model parametrization is a core issue for all varieties of mathematical modelling in biology. This problem becomes more tractable when qualitative modelling is used, since the range of parameter values is finite and consequently it is possible to enumerate and evaluate all possible parametrizations of a model. If such an approach is undertaken, one usually obtains a vast set of parametrizations that are scored for various properties, e.g. fitness. The usual next step is to take the best scoring parametrization. However, as noted in recent works [1, 4], there is knowledge to be gained from examining sets of parametrizations based on their scoring. In this article we extend this line of thought and introduce a comprehensive workflow for comparing such sets and obtaining knowledge from the comparison.
Keywords
- Qualitative modelling
- Statistical inference
- Big data
- Parameter identification
- Data mining
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Alexopoulos, L.G., Saez-Rodriguez, J., Cosgrove, B.D., Lauffenburger, D.A., Sorger, P.K.: Networks inferred from biochemical data reveal profound differences in toll-like receptor and inflammatory signaling between normal and transformed hepatocytes. Mol. Cell. Proteomics 9(9), 1849–1865 (2010)
DAlessandro, L.A., Samaga, R., Maiwald, T., Rho, S.-H., Bonefas, S., Raue, A., Iwamoto, N., Kienast, A., Waldow, K., Meyer, R., Schilling, M., Timmer, J., Klamt, S., Klingmller, U.: Disentangling the complexity of HGF signaling by combining qualitative and quantitative modeling. PLoS Comput. Biol. 11(4), e1004192 (2015)
de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9(1), 67–103 (2002)
Guziolowski, C., Videla, S., Eduati, F., Thiele, S., Cokelaer, T., Siegel, A., Saez-Rodriguez, J.: Exhaustively characterizing feasible logic models of a signaling network using answer set programming. Bioinformatics 30, 2320–2326 (2013)
Klarner, H., Siebert, H., Bockmayr, A.: Time series dependent analysis of unparametrized Thomas networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 99, 1338–1351 (2012)
Lee, W.-P., Tzou, W.-S.: Computational methods for discovering gene networks from expression data. Briefings Bioinf. 10(4), 408–423 (2009)
Miller, D.M., Thornton, M.A.: Multiple Valued Logic: Concepts and Representations, vol. 2. Morgan & Claypool Publishers, San Rafael (2007)
Saadatpour, A., Albert, R., Reluga, T.C.: A reduction method for boolean network models proven to conserve attractors. SIAM J. Appl. Dyn. Syst. 12(4), 1997–2011 (2013)
Shmulevich, I., Kauffman, S.A.: Activities and sensitivities in boolean network models. Phys. Rev. Lett. 93(4), 048701 (2004)
Snoussi, E.H.: Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach. Dyn. Stab. Syst. 4(3–4), 565–583 (1989)
Streck, A.: HGF network analysis (2015). http://dibimath.github.io/HGF_4_8_12/. Accessed 18 June 2015
Streck, A.: HSB 2015 example model data (2015). http://dibimath.github.io/HSB_2015/. Accessed 18 June 2015
Streck, A.: TREMPPI source repository (2015). https://github.com/xstreck1/TREMPPI/. Accessed 18 June 2015
Streck, A., Siebert, H.: Extensions for LTL model checking of Thomas networks. In: Advances is Systems and Synthetic Biology, vol. 14, pp. 101–114. EDP Sciences (2015)
Streck, A., Thobe, K., Siebert, H.: Analysing cell line specific EGFR signalling via optimized automata based model checking. In: Roux, O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 264–276. Springer, Heidelberg (2015)
Thobe, K., Streck, A., Klarner, H., Siebert, H.: Model Integration and crosstalk analysis of logical regulatory networks. In: Mendes, P., Dada, J.O., Smallbone, K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 32–44. Springer, Heidelberg (2014)
Thomas, R.: Regulatory networks seen as asynchronous automata: a logical description. J. Theoret. Biol. 153(1), 1–23 (1991)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Streck, A., Thobe, K., Siebert, H. (2015). Comparative Statistical Analysis of Qualitative Parametrization Sets. In: Abate, A., Šafránek, D. (eds) Hybrid Systems Biology. HSB 2015. Lecture Notes in Computer Science(), vol 9271. Springer, Cham. https://doi.org/10.1007/978-3-319-26916-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-26916-0_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26915-3
Online ISBN: 978-3-319-26916-0
eBook Packages: Computer ScienceComputer Science (R0)