Skip to main content

Population and Subpopulation Models

  • Chapter
  • First Online:
Stochastic Neuron Models

Part of the book series: Mathematical Biosciences Institute Lecture Series ((STOCHBS,volume 1.5))

  • 1595 Accesses

Abstract

We have seen stochastic neuron firing models that have inherent frequencies in their subthreshold dynamics, e.g., for the Morris-Lecar neuron [28]. This frequency shows up at the population level. If we record the firings of several model neurons over a period of time, the firings of each single neuron follow an inherent frequency, but often skipping many repeats of that frequency. The skipping phenomenon is a result of the tendency of the neurons to fire on their subthreshold quasicycles, a stochastic facilitation phenomenon explained in Sections 1.2 and 2.5 When the firings of the several neurons, driven by the same or partially common noise, are added together as a function of time, we obtain a function that oscillates at the common inherent frequency of the family.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenwood, P.E., McDonnell, M.D., Ward, L.M.: Dynamics of gamma bursts in local field potentials. Neural Comput. 27, 74–103 (2015)

    Article  Google Scholar 

  2. Brunel, N., Hakim, V.: Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput. 11, 1621–1671 (1999)

    Article  Google Scholar 

  3. Kurtz, T.: Strong approximation theorems for density dependent Markov chains. Stoch. Process. Appl. 6, 223–240 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Izhikevich, E.M., Edelman, G.M.: Large-scale models of mammalian thalamocortical systems. Proc. Natl. Acad. Sci. U. S. A. 105(9), 3593–3598 (2008)

    Article  Google Scholar 

  5. Ditlevsen, S., Greenwood, P.E.: The Morris-Lecar neuron model embeds a leaky integrate-and-fire model. J. Math. Biol. 67, 239–259 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baxendale, P.H., Greenwood, P.E.: Sustained oscillations for density dependent Markov processes. J. Math. Biol. 63, 433–457 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2nd edn. Springer, Berlin (1990)

    MATH  Google Scholar 

  8. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972)

    Article  Google Scholar 

  9. Kang, K., Shelley, M., Henrie, J.A., Shapley, R.: LFP spectral peaks in V1 cortex: network resonance and cortico-cortical feedback. J. Comput. Neurosci. 29, 495–507 (2010)

    Article  Google Scholar 

  10. Ray, S., Maunsell, J.H.R.: Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLOS Biol. 9(4), 1000610 (2011)

    Article  Google Scholar 

  11. McKane, A.J., Biancalani, T., Rogers, T.: Stochastic pattern formation and spontaneous polarisation: the linear noise approximation and beyond. Bull. Math. Biol. 76, 895–921 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wallace, E., Benayoun, M., van Dronglen, W., Cowan, J.D.: Emergent oscillations in networks of stochastic spiking neurons. PLoS One 6(5), 14804 (2011)

    Article  Google Scholar 

  13. Borodin, A.N., Salminen, P.: Handbook of Brownian Motion - Facts and Formulae. Probability and Its Applications, 2nd edn. Birkhauser, Basel (2002)

    Google Scholar 

  14. Vakeroudis, S.: On the windings of complex-valued Ornstein-Uhlenbeck processes driven by a Brownian motion and by a stable process. arXiv:1209.4027v1 (2012)

    Google Scholar 

  15. Lugo, C.A., McKane, A.J.: Quasicycles in a spatial predator-prey model. Phys. Rev. E 78, 051911 (2008)

    Article  MathSciNet  Google Scholar 

  16. Asllani, M., Biancalini, T., Fanelli, D., McKane, A.J.: The linear noise approximation for reaction-diffusion systems on networks. arXiv:1305.7318v1 (2013)

    Google Scholar 

  17. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North Holland, Amsterdam (1992)

    MATH  Google Scholar 

  18. Doiron, B., Lindner, B., Longtin, A., Maler, L., Bastian, J.: Oscillatory activity in electrosensory neurons increases with spatial correlation of the stochastic input stimulus. Phys. Rev. Lett. 93(4), 048101 (2004)

    Article  Google Scholar 

  19. Lindner, B., Doiron, B., Longtin, A.: Theory of oscillatory firing induced by spatially correlated noise and delayed inhibitory feedback. Phys. Rev. E 72, 061919 (2005)

    Article  MathSciNet  Google Scholar 

  20. Dumont, G., Northoff, G., Longtin, A.: Linear noise approximation for oscillations in a stochastic inhibitory network with delay. Phys. Rev. E 90, 012702 (2014)

    Article  Google Scholar 

  21. Klosek, M.M., Kuske, R.: Multiscale analysis of stochastic differential equations. SIAM Multiscale Model. Simul. 3, 706–729 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, New York (1984)

    Book  MATH  Google Scholar 

  23. Acebron, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)

    Article  Google Scholar 

  24. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D 143, 1–20 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Greenwood, P.E., McDonnell, M.D., Ward, L.M.: A Kuramoto coupling of quasi-cycle oscillators. arXiv:1511.04124v2

    Google Scholar 

  26. DeVille, R.E.L., Peskin, C.S., Spencer, J.H.: Dynamics of stochastic neural networks and the connection to random graph theory. Math. Model. Nat. Phenom. 5(2), 26–66 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Greenwood, P.E., Ward, L.M. (2016). Population and Subpopulation Models. In: Stochastic Neuron Models. Mathematical Biosciences Institute Lecture Series(), vol 1.5. Springer, Cham. https://doi.org/10.1007/978-3-319-26911-5_3

Download citation

Publish with us

Policies and ethics