Skip to main content

A Solvable Four-Dimensional QFT

  • Chapter
  • First Online:
Quantum Mathematical Physics

Abstract

We review a sequence of papers in which we show that the quartic matrix model with an external matrix is exactly solvable in terms of the solution of a non-linear integral equation. The interacting scalar model on four-dimensional Moyal space is of this type, and our solution leads to the construction of Schwinger functions. Taking a special limit leads to a QFT on \(\mathbb{R}^{4}\) which satisfies growth property, covariance and symmetry. There is numerical evidence for reflection positivity of the 2-point function for a certain range of the coupling constant.

Mathematics Subject Classification (2010). 81T16, 81T08, 39A99, 45E05

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For each assignment \(N\mapsto f_{N} \in \mathcal{S}^{N}\) of test functions, one has

    $$\displaystyle{\sum _{M,N}\int \!dx\,dy\;S(x_{1},\ldots,x_{N},y_{1},\ldots,y_{M})\overline{f_{N}(x_{1}^{r},\ldots,x_{N}^{r})}f_{M}(y_{1},\ldots,y_{M}) \geq 0\;,}$$

    where \((x^{0},x^{1},\ldots x^{D-1})^{r}:= (-x^{0},x^{1},\ldots x^{D-1})\).

References

  1. G. Benfatto, V. Mastropietro, Ward identities and vanishing of the beta function for d = 1 interacting Fermi systems. J. Stat. Phys. 115, 143–184 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Berg, Stieltjes-Pick-Bernstein-Schoenberg and their connection to complete monotonicity, in Positive Definite Functions. From Schoenberg to Space-Time Challenges, ed. by J. Mateu, E. Porcu (Department of Mathematics, University Jaume I, Castellon, 2008)

    Google Scholar 

  3. N.N. Bogolyubov, D.V. Shirkov, Introduction to the Theory of Quantized Fields. Interscience Monographs in Physics and Astronomy, vol. 3 (Interscience Publishers, New York, 1959)

    Google Scholar 

  4. E. Brezin, V.A. Kazakov, Exactly solvable field theories of closed strings. Phys. Lett. B 236, 144–150 (1990)

    Article  MathSciNet  Google Scholar 

  5. T. Carleman, Sur la résolution de certaines équations intégrales. Arkiv for Mat., Astron. och Fysik 16, 19pp (1922)

    Google Scholar 

  6. I. Chepelev, R. Roiban, Renormalization of quantum field theories on noncommutative \(\mathbb{R}^{d}\). 1. Scalars. JHEP 0005, 037 (2000). [hep-th/9911098]

    Google Scholar 

  7. I. Chepelev, R. Roiban, Convergence theorem for noncommutative Feynman graphs and renormalization. JHEP 0103, 001 (2001). [hep-th/0008090]

    Article  MathSciNet  Google Scholar 

  8. M. Disertori, V. Rivasseau, Two and three loops beta function of non commutative ϕ 4 4 theory. Eur. Phys. J. C 50, 661–671 (2007). [hep-th/0610224]

    Article  MATH  Google Scholar 

  9. M. Disertori, R. Gurau, J. Magnen, V. Rivasseau, Vanishing of beta function of non commutative ϕ 4 4 theory to all orders. Phys. Lett. B 649, 95–102 (2007). [hep-th/0612251]

    Article  MathSciNet  MATH  Google Scholar 

  10. M.R. Douglas, S.H. Shenker, Strings in less than one dimension. Nucl. Phys. B 335, 635–654 (1990)

    Article  MathSciNet  Google Scholar 

  11. V. Gayral, R. Wulkenhaar, Spectral geometry of the Moyal plane with harmonic propagation. J. Noncommut. Geom. 7, 939–979 (2013). [arXiv:1108.2184 [math.OA]]

    Google Scholar 

  12. J.M. Gracia-Bondía, J.C. Várilly, Algebras of distributions suitable for phase space quantum mechanics. I. J. Math. Phys. 29, 869–879 (1988)

    Article  MATH  Google Scholar 

  13. D.J. Gross, A.A. Migdal, Nonperturbative two-dimensional quantum gravity. Phys. Rev. Lett. 64, 127–130 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Grosse, R. Wulkenhaar, The β-function in duality-covariant noncommutative ϕ 4-theory. Eur. Phys. J. C 35, 277–282 (2004). [hep-th/0402093]

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Grosse, R. Wulkenhaar, Power-counting theorem for non-local matrix models and renormalisation. Commun. Math. Phys. 254, 91–127 (2005). [hep-th/0305066]

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Grosse, R. Wulkenhaar, Renormalisation of ϕ 4-theory on noncommutative \(\mathbb{R}^{4}\) in the matrix base. Commun. Math. Phys. 256, 305–374 (2005). [hep-th/0401128]

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Grosse, R. Wulkenhaar, Renormalization of ϕ 4-theory on noncommutative \(\mathbb{R}^{4}\) to all orders. Lett. Math. Phys. 71, 13–26 (2005). [hep-th/0403232]

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Grosse, R. Wulkenhaar, Self-dual noncommutative ϕ 4-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory. Commun. Math. Phys. 329, 1069–1130 (2014). [arXiv:1205.0465 [math-ph]]

    Google Scholar 

  19. H. Grosse, R. Wulkenhaar, Progress in solving a noncommutative quantum field theory in four dimensions. arXiv:0909.1389 [hep-th]

    Google Scholar 

  20. H. Grosse, R. Wulkenhaar, Solvable limits of a 4D noncommutative QFT. arXiv:1306.2816 [math-ph]

    Google Scholar 

  21. H. Grosse, R. Wulkenhaar, Solvable 4D noncommutative QFT: phase transitions and quest for reflection positivity. arXiv:1406.7755 [hep-th]

    Google Scholar 

  22. R. Gurau, V. Rivasseau, Parametric representation of noncommutative field theory. Commun. Math. Phys. 272, 811 (2007). [math-ph/0606030]

    Google Scholar 

  23. R. Gurau, J. Magnen, V. Rivasseau, F. Vignes-Tourneret, Renormalization of non-commutative ϕ 4 4 field theory in x space. Commun. Math. Phys. 267, 515–542 (2006). [hep-th/0512271]

    Article  MathSciNet  MATH  Google Scholar 

  24. K. Hepp, Proof of the Bogolyubov-Parasiuk theorem on renormalization. Commun. Math. Phys. 2, 301 (1966)

    Article  MATH  Google Scholar 

  25. G. Källén, On the definition of the renormalization constants in quantum electrodynamics. Helv. Phys. Acta 25, 417–434 (1952)

    MATH  Google Scholar 

  26. T. Krajewski, R. Wulkenhaar, Perturbative quantum gauge fields on the noncommutative torus. Int. J. Mod. Phys. A 15, 1011–1029 (2000). [hep-th/9903187]

    MathSciNet  MATH  Google Scholar 

  27. P.P. Kulish, Factorization of the classical and quantum S matrix and conservation laws. Theor. Math. Phys. 26, 132 (1976). [Teor. Mat. Fiz. 26, 198 (1976)]

    Google Scholar 

  28. E. Langmann, R.J. Szabo, Duality in scalar field theory on noncommutative phase spaces. Phys. Lett. B 533, 168–177 (2002). [hep-th/0202039]

    Article  MathSciNet  MATH  Google Scholar 

  29. H. Lehmann, Über Eigenschaften von Ausbreitungsfunktionen und Renormierungskonstanten quantisierter Felder. Nuovo Cim. 11, 342–357 (1954)

    Article  MATH  Google Scholar 

  30. C.P. Martin, D. Sanchez-Ruiz, The one loop UV divergent structure of U(1) Yang-Mills theory on noncommutative \(\mathbb{R}^{4}\). Phys. Rev. Lett. 83, 476 (1999). [hep-th/9903077]

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Minwalla, M. van Raamsdonk, N. Seiberg, Noncommutative perturbative dynamics. JHEP 0002, 020 (2000). [hep-th/9912072]

    Article  Google Scholar 

  32. J. Moser, Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math. 16, 197 (1975)

    Article  MATH  Google Scholar 

  33. K. Osterwalder, R. Schrader, Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31, 83–112 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  34. K. Osterwalder, R. Schrader, Axioms for Euclidean Green’s functions II. Commun. Math. Phys. 42, 281–305 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Polchinski, Renormalization and effective lagrangians. Nucl. Phys. B 231, (1984) 269.

    Article  Google Scholar 

  36. V. Rivasseau, From Perturbative to Constructive Renormalization (Princeton University Press, Princeton, 1991)

    Book  Google Scholar 

  37. V. Rivasseau, Non-commutative renormalization, in Quantum Spaces (Séminaire Poincaré X), ed. by B. Duplantier, V. Rivasseau (Birkhäuser, Basel, 2007), pp. 19–109. [arXiv:0705.0705 [hep-th]]

    Google Scholar 

  38. V. Rivasseau, F. Vignes-Tourneret, R. Wulkenhaar, Renormalisation of noncommutative ϕ 4-theory by multi-scale analysis. Commun. Math. Phys. 262, 565–594 (2006). [hep-th/0501036]

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Schwinger, Euclidean quantum electrodynamics. Phys. Rev. 115, 721–731 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  40. R.F. Streater, A.S. Wightman, PCT, Spin and Statistics, and All That (Benjamin, New York, 1964)

    MATH  Google Scholar 

  41. F.G. Tricomi, Integral Equations (Interscience, New York, 1957)

    MATH  Google Scholar 

  42. J.C. Várilly, J.M. Gracia-Bondía, Algebras of distributions suitable for phase-space quantum mechanics. 2. Topologies on the Moyal algebra. J. Math. Phys. 29, 880–887 (1988)

    Google Scholar 

  43. F. Vignes-Tourneret, Renormalization of the orientable non-commutative Gross-Neveu model. Ann Henri Poincare 8, 427 (2007). [math-ph/0606069]

    Google Scholar 

  44. D.V. Widder, The Stieltjes transform. Trans. Am. Math. Soc. 43, 7–60 (1938)

    Article  MathSciNet  Google Scholar 

  45. A.S. Wightman, Quantum field theory in terms of vacuum expectation values. Phys. Rev. 101, 860–866 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  46. K.G. Wilson, Confinement of quarks. Phys. Rev. D 10, 2445–2459 (1974).

    Article  Google Scholar 

  47. W. Zimmermann, Convergence of Bogolyubov’s method of renormalization in momentum space. Commun. Math. Phys. 15, 208 (1969). [Lect. Notes Phys. 558, 217 (2000)]

    Google Scholar 

Download references

Acknowledgements

We would like to cordially thank Jürgen Tolksdorf and Felix Finster for invitation to Quantum Mathematical Physics and hospitality during the conference in Regensburg. We submit our best wishes to Eberhard Zeidler.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Grosse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grosse, H., Wulkenhaar, R. (2016). A Solvable Four-Dimensional QFT. In: Finster, F., Kleiner, J., Röken, C., Tolksdorf, J. (eds) Quantum Mathematical Physics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-26902-3_8

Download citation

Publish with us

Policies and ethics