Functions of Bioactive and Intelligent Natural Polymers in the Optimization of Drug Delivery

  • Ndidi C. NgwulukaEmail author
  • Nelson A. Ochekpe
  • Okezie I. Aruoma


Bioactive polymers, by their structural configuration and conformation, possess the ability to exert biological activities and consequently elicit responses from cells and tissues. Intelligent polymers are smart polymers which respond to internal and external stimuli in order to propel the release or modify the release of drugs. Natural polymers are biogenic, biocompatible, biodegradable, and safe for consumption. Consequently, they present as suitable materials that the human body can identify with and not treat as foreign bodies, thereby reducing the complications encountered when dealing with synthetic polymers. Natural polymers have been shown to be bioactive, exhibiting biological activities such as antitumor, anticoagulant, antioxidant, antimicrobial, antiulcer, anti-inflammatory, and antirheumatic. In addition, natural polymers are meritorious materials for the fabrication of self-regulated or externally regulated drug delivery systems. These systems respond to the state of the environment for efficacious therapy. Drug delivery technology is shifting from the controlled release of drugs over time to the release of drugs when and where needed, especially for chronic diseases. Indeed, intelligent polymers are choice polymers for such delivery systems. Their synthetic counterparts were actually synthesized to mimic these natural polymers which further buttress the need to revert to nature for intelligent and bioactive polymers. The contexts of natural bioactive and intelligent polymers have unique applications in drug delivery, embracing nanobiotechnology. This would ultimately benefit drug delivery systems in benchmarking new drug formulations.


Bioactive Biogenic Drug delivery Intelligent polymers Nanobiotechnology Natural polymers 


  1. 1.
    Ngwuluka NC, Ochekpe NA, Aruoma OI (2014) Polymers 6:1312–1332CrossRefGoogle Scholar
  2. 2.
    Ngwuluka NC, Ochekpe N (2015) In: Mishra M (ed) Encyclopedia of biomedical polymers and polymeric biomaterials. Taylor & Francis, New York, NY, 11 volume setGoogle Scholar
  3. 3.
    Sullivan R, Smith JE, Rowan NJ (2006) Perspect Biol Med 49:159–170CrossRefGoogle Scholar
  4. 4.
    Taguchi T, Furue H, Kimura T, Kondo T, Hattori T, Itoh I et al (1985) Gan To Kagaku Ryoho 12:366–378Google Scholar
  5. 5.
    Kidd PM (2000) Altern Med Rev 5:4–27Google Scholar
  6. 6.
    Borchers AT, Stern JS, Hackman RM, Keen CL, Gershwin ME (1999) Proc Soc Exp Biol Med 221:281–293CrossRefGoogle Scholar
  7. 7.
    Kimura Y, Tojima H, Fukase S, Takeda K (1994) Acta Otolaryngol 114:192–195CrossRefGoogle Scholar
  8. 8.
    Niimoto M, Hattori T, Tamada R, Sugimachi K, Inokuchi K, Ogawa N (1988) Jpn J Surg 18:681–686CrossRefGoogle Scholar
  9. 9.
    Nakazato H, Koike A, Saji S, Ogawa N, Sakamoto J, Nakazato H et al (1994) The Lancet 343:1122–1126CrossRefGoogle Scholar
  10. 10.
    Okudaira Y, Sugimachi K, Inokuchi K, Kai H, Kuwano H, Matsuura H (1982) Jpn J Surg 12:249–256CrossRefGoogle Scholar
  11. 11.
    Ogoshi K, Satou H, Isono K, Mitomi T, Endoh M, Sugita M (1995) Cancer Invest 13:363–369CrossRefGoogle Scholar
  12. 12.
    Go P, Chung C (1989) J Int Med Res 17:141–149Google Scholar
  13. 13.
    Torisu M, Hayashi Y, Ishimitsu T, Fujimura T, Iwasaki K, Katano M et al (1990) Cancer immunology. Immunotherapy 31:261–268CrossRefGoogle Scholar
  14. 14.
    Mitomi T, Tsuchiya S, Iijima N, Aso K, Suzuki K, Nishiyama K et al (1992) Dis Colon Rectum 35:123–130CrossRefGoogle Scholar
  15. 15.
    Si-Iiojima SKK, Furuta M, Niibe H (1993) Anticancer Res 13:1815–1820Google Scholar
  16. 16.
    Liu J, Zhou J (1993) Anonymous PSP international symposium, Fudan University Press, Hong Kong, pp 183Google Scholar
  17. 17.
    Sun Z, Yang Q, Fei H (1999) In: Yang, Q. (ed), Advanced Research in PSP. Hong Kong Association for Health Care Ltd., Hong Kong, pp. 304–307.Google Scholar
  18. 18.
    Gonzaga MLC, Bezerra DP, Alves APNN, de Alencar NMN, de Oliveira Mesquita R, Lima MW et al (2009) J Nat Med 63:32–40CrossRefGoogle Scholar
  19. 19.
    Yan J, Wang W, Li L, Wu J (2011) Carbohydr Polym 85:753–758CrossRefGoogle Scholar
  20. 20.
    Li N, Li L, Fang JC, Wong JH, Ng TB, Jiang Y et al (2012) Biosci Rep 32:221–228CrossRefGoogle Scholar
  21. 21.
    Nagaoka M, Shibata H, Kimura-Takagi I, Hashimoto S, Aiyama R, Ueyama S et al (2000) Biofactors 12:267CrossRefGoogle Scholar
  22. 22.
    Han S, Lee CW, Kang MR, Yoon YD, Kang JS, Lee KH et al (2006) Cancer Lett 243:264–273CrossRefGoogle Scholar
  23. 23.
    Zong A, Cao H, Wang F (2012) Carbohydr Polym 90:1395–1410CrossRefGoogle Scholar
  24. 24.
    Chevolot L, Foucault A, Chaubet F, Kervarec N, Sinquin C, Fisher A et al (1999) Carbohydr Res 319:154–165CrossRefGoogle Scholar
  25. 25.
    Dobashi K, Nishino T, Fujihara M, Nagumo T (1989) Carbohydr Res 194:315–320CrossRefGoogle Scholar
  26. 26.
    Colliec S, Fischer A, Tapon-Bretaudiere J, Boisson C, Durand P, Jozefonvicz J (1991) Thromb Res 64:143–154CrossRefGoogle Scholar
  27. 27.
    Cáceres PJ, Carlucci MJ, Damonte EB, Matsuhiro B, Zúñiga EA (2000) Phytochemistry 53:81–86CrossRefGoogle Scholar
  28. 28.
    de Souza MCR, Marques CT, Dore CMG, da Silva FRF, Rocha HAO, Leite EL (2007) J Appl Phycol 19:153–160CrossRefGoogle Scholar
  29. 29.
    Huang Y, Li R (2014) Mar Drugs 12:4379–4398CrossRefGoogle Scholar
  30. 30.
    Rupérez P, Ahrazem O, Leal JA (2002) J Agric Food Chem 50:840–845CrossRefGoogle Scholar
  31. 31.
    Wang J, Zhang Q, Zhang Z, Li Z (2008) Int J Biol Macromol 42:127–132CrossRefGoogle Scholar
  32. 32.
    Kim S, Choi D, Athukorala Y, Jeon Y, Senevirathne M, Rha CK (2007) J Food Sci Nutr 12:65–73CrossRefGoogle Scholar
  33. 33.
    Wijesekara I, Pangestuti R, Kim S (2011) Carbohydr Polym 84:14–21CrossRefGoogle Scholar
  34. 34.
    Lauder RM (2009) Complement Ther Med 17:56–62CrossRefGoogle Scholar
  35. 35.
    Vergés J, Montell E, Herrero M, Perna C, Cuevas J, Dalmau J et al (2005) Dermatol Online J 11:31Google Scholar
  36. 36.
    Hori Y, Hoshino J, Yamazaki C, Sekiguchi T, Miyauchi S, Horie K (2001) Jpn J Pharmacol 85:155–160CrossRefGoogle Scholar
  37. 37.
    Dumelod BD, Ramirez RPB (1999) Int J Food Sci Nutr 50:283CrossRefGoogle Scholar
  38. 38.
    Jang JS, Lee JS, Lee JH, Kwon DS, Lee KE, Lee SY et al (2010) Arch Pharm Res 33:853–861CrossRefGoogle Scholar
  39. 39.
    Smit AJ (2004) J Appl Phycol 16:245–262CrossRefGoogle Scholar
  40. 40.
    Witvrouw M, De Clercq E (1997) Gen Pharmacol Vascular Syst 29:497–511CrossRefGoogle Scholar
  41. 41.
    Ghosh T, Chattopadhyay K, Marschall M, Karmakar P, Mandal P, Ray B (2009) Glycobiology 19:2–15CrossRefGoogle Scholar
  42. 42.
    Bo S, Muschin T, Kanamoto T, Nakashima H, Yoshida T (2013) Carbohydr Polym 94(2):899–903CrossRefGoogle Scholar
  43. 43.
    Jeon K, Katsuraya K, Inazu T, Kaneko Y, Mimura T, Uryu T (2000) J Am Chem Soc 122:12536–12541CrossRefGoogle Scholar
  44. 44.
    Hirano S, Nagao N (1989) Agric Biol Chem 53:3065–3066Google Scholar
  45. 45.
    Jeon Y, Park P, Kim S (2001) Carbohydr Polym 44:71–76CrossRefGoogle Scholar
  46. 46.
    Volod’ko AV, Davydova VN, Chusovitin E, Sorokina IV, Dolgikh MP, Tolstikova TG et al (2014) Carbohydr Polym 101:1087–1093CrossRefGoogle Scholar
  47. 47.
    Shibata H, Kimura-Takagi I, Aiyama R, Nagaoka M, Ueyama S, Yokokura T et al (2000) Biofactors 11:235CrossRefGoogle Scholar
  48. 48.
    Panlasigui LN, Baello OQ, Dimatangal JM, Dumelod BD (2003) Asia Pac J Clin Nutr 12:209–214Google Scholar
  49. 49.
    Tsuge K, Okabe M, Yoshimura T, Sumi T, Tachibana H, Yamada K (2004) Food Sci Technol Res 10:147–151CrossRefGoogle Scholar
  50. 50.
    Pengzhan Y, Quanbin Z, Ning L, Zuhong X, Yanmei W, Zhi’en L (2003) J Appl Phycol 15:21–27CrossRefGoogle Scholar
  51. 51.
    Onishi T, Umemura S, Yanagawa M, Matsumura M, Sasaki Y, Ogasawara T et al (2008) Arch Oral Biol 53:257–260CrossRefGoogle Scholar
  52. 52.
    Gazi MI (1991) J Clin Periodontol 18:75–77CrossRefGoogle Scholar
  53. 53.
    Clark DT, Gazl MI, Cox SW, Eley BM, Tinsley GF (1993) J Clin Periodontol 20:238–243CrossRefGoogle Scholar
  54. 54.
    Moon HJ, Lee SR, Shim SN, Jeong SH, Stonik VA, Rasskazov VA et al (2008) Biol Pharm Bull 31:284–289CrossRefGoogle Scholar
  55. 55.
    Armisen R, Galatas F (1987) In: McHugh DJ (ed) Production and utilization of products from commercial seaweeds, vol 288., pp 1–57Google Scholar
  56. 56.
    Wu J, Ding X (2001) J Agric Food Chem 49:501–506CrossRefGoogle Scholar
  57. 57.
    Ardizzoni A, Neglia R, Baschieri M, Cermelli C, Caratozzolo M, Righi E et al (2011) J Mater Sci Mater Med 22:2329–2338CrossRefGoogle Scholar
  58. 58.
    Liu M, Wu K, Mao X, Wu Y, Ouyang J (2010) J Ethnopharmacol 127:32–37CrossRefGoogle Scholar
  59. 59.
    Lu J, Chen X, Zhang Y, Xu J, Zhang L, Li Z et al (2013) Int J Mol Med 31:1463–1470Google Scholar
  60. 60.
    Cheng Y, Tang K, Wu S, Liu L, Qiang C, Lin X et al (2011) PLoS One 6, e27437CrossRefGoogle Scholar
  61. 61.
    Dai H, Jia G, Liu X, Liu Z, Wang H (2014) Environ Toxicol Pharmacol 38:263–271CrossRefGoogle Scholar
  62. 62.
    da Silva BP, Parente JP (2003) Carbohydr Polym 51:239–242CrossRefGoogle Scholar
  63. 63.
    Nakashima H, Yoshida O, Baba M, De Clercq E, Yamamoto N (1989) Antiviral Res 11:233–246CrossRefGoogle Scholar
  64. 64.
    Coombe DR, Harrop HA, Watton J, Mulloy B, Barrowcliffe TW, Rider CC (1995) AIDS Res Hum Retroviruses 11:1393–1396CrossRefGoogle Scholar
  65. 65.
    Guzdek A, Rokita H (1997) Mediators Inflamm 6:58–63CrossRefGoogle Scholar
  66. 66.
    Delattre C, Fenoradosoa TA, Michaud P (2011) Braz Arch Biol Technol 54:1075–1092Google Scholar
  67. 67.
    Hayashi T, Hayashi K, Maeda M, Kojima I (1996) J Nat Prod 59:83–87CrossRefGoogle Scholar
  68. 68.
    Pujol C, Matulewicz M, Cerezo A, Damonte E (1998) Phytomedicine 5:205–208CrossRefGoogle Scholar
  69. 69.
    Maji PK, Sen IK, Devi KSP, Maiti TK, Sikdar SR, Islam SS (2013) Carbohydr Res 368:22–28CrossRefGoogle Scholar
  70. 70.
    Yoo S, Yoon EJ, Cha J, Lee HG (2004) Int J Biol Macromol 34:37–41CrossRefGoogle Scholar
  71. 71.
    Liu J, Luo J, Ye H, Zeng X (2012) Food Chem Toxicol 50:767–772CrossRefGoogle Scholar
  72. 72.
    Giavasis I (2014) Curr Opin Biotechnol 26:162–173CrossRefGoogle Scholar
  73. 73.
    Shingel KI (2004) Carbohydr Res 339:447–460CrossRefGoogle Scholar
  74. 74.
    Zhong K, Wang Q, He Y, He X (2010) Int J Biol Macromol 47:356–360CrossRefGoogle Scholar
  75. 75.
    Recuenco FC, Kobayashi K, Ishiwa A, Enomoto-Rogers Y, Fundador NGV, Sugi T et al (2014) Scientific Rep 4:4723Google Scholar
  76. 76.
    Panilaitis B, Johri A, Blank W, Kaplan D, Fuhrman J (2002) Clin Diagn Lab Immunol 9:1240–1247Google Scholar
  77. 77.
    de Oliveira AJB, Cordeiro LM, Gonçalves RAC, Ceole LF, Ueda-Nakamura T, Iacomini M (2013) Carbohydr Polym 94:179–184CrossRefGoogle Scholar
  78. 78.
    Evans T (2002) Aliment Pharmacol Ther 16:6–11CrossRefGoogle Scholar
  79. 79.
    Liao W-R, Lin J-Y, Shieh W-Y, Jeng W-L, Huang R (2003) J Ind Microbiol Biotechnol 30:433CrossRefGoogle Scholar
  80. 80.
    Teixeira EH, Arruda FVS, do Nascimento KS, Carneiro VA, Nagano CS, da Silva BR et al (2012) In: Chang C-F (ed) Carbohydrates – comprehensive studies on glycobiology and glycotechnology. InTech, Croatia, pp 533–558Google Scholar
  81. 81.
    Mitsumata T, Suemitsu Y, Fujii K, Fujii T, Taniguchi T, Koyama K (2003) Polymer 44:7103–7111CrossRefGoogle Scholar
  82. 82.
    Aiedeh K, Taha MO (1999) Arch Pharm (Weinheim) 332:103–107CrossRefGoogle Scholar
  83. 83.
    Huang Y, Lam U (2011) J Chin Chem Soc 58:779–785CrossRefGoogle Scholar
  84. 84.
    Ngwuluka NC, Choonara YE, Modi G, du Toit LC, Kumar P, Ndesendo VM et al (2013) AAPS PharmSciTech 14:605–619CrossRefGoogle Scholar
  85. 85.
    Lee SJ, Park K (1996) J Mol Recognit 9:549–557CrossRefGoogle Scholar
  86. 86.
    Brownlee M, Cerami A (1979) Science 206:1190–1191CrossRefGoogle Scholar
  87. 87.
    Jeong SY, Kim SW, Holmberg DL, McRea JC (1985) J Control Release 2:143–152CrossRefGoogle Scholar
  88. 88.
    Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang M (2005) J Control Release 103:609–624CrossRefGoogle Scholar
  89. 89.
    Zhang Y, Gao C, Li X, Xu C, Zhang Y, Sun Z et al (2014) Carbohydr Polym 101:171–178CrossRefGoogle Scholar
  90. 90.
    Ying L, Jiali S, Jiang G, Jia Z, Fuxin D (2007) Chin J Chem Eng 15:566–572CrossRefGoogle Scholar
  91. 91.
    Bhattarai N, Gunn J, Zhang M (2010) Adv Drug Deliv Rev 62:83–99CrossRefGoogle Scholar
  92. 92.
    Chen J, Cheng T (2009) Polymer 50:107–116CrossRefGoogle Scholar
  93. 93.
    Fundueanu G, Constantin M, Ascenzi P (2008) Biomaterials 29:2767–2775CrossRefGoogle Scholar
  94. 94.
    Miyazaki S, Suzuki S, Kawasaki N, Endo K, Takahashi A, Attwood D (2001) Int J Pharm 229:29–36CrossRefGoogle Scholar
  95. 95.
    Kim SJ, Shin SR, Lee JH, Lee SH, Kim SI (2003) J Appl Polym Sci 90:91–96CrossRefGoogle Scholar
  96. 96.
    Sun S, Mak AF (2001) J Polym Sci B 39:236–246CrossRefGoogle Scholar
  97. 97.
    Rozier A, Mazuel C, Grove J, Plazonnet B (1997) Int J Pharm 153:191–198CrossRefGoogle Scholar
  98. 98.
    Rozier A, Mazuel C, Grove J, Plazonnet B (1989) Int J Pharm 57:163–168CrossRefGoogle Scholar
  99. 99.
    Itoh K, Yahaba M, Takahashi A, Tsuruya R, Miyazaki S, Dairaku M et al (2008) Int J Pharm 356:95–101CrossRefGoogle Scholar
  100. 100.
    Gao X, Matsui H (2005) Adv Mater 17:2037–2050CrossRefGoogle Scholar
  101. 101.
    Bong DT, Clark TD, Granja JR, Ghadiri MR (2001) Angew Chem Int Ed 40:988–1011CrossRefGoogle Scholar
  102. 102.
    Fernandez-Lopez S (2001) Nature 412:452CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ndidi C. Ngwuluka
    • 1
    Email author
  • Nelson A. Ochekpe
    • 1
  • Okezie I. Aruoma
    • 2
  1. 1.Faculty of Pharmaceutical SciencesUniversity of JosJosNigeria
  2. 2.School of Pharmacy, American University of Health SciencesSignal HillUSA

Personalised recommendations