Skip to main content

Abstract

Electroactive polymers (EAPs) and coatings (EACs) provide an expanding and progressive frontier for responsive drug delivery and the design of biomedical devices. EAPs possess the distinctive propensity to undergo a change in shape and/or size following electrical current activation. Current interest in EAPs and EACs extends to use in controlled drug delivery applications, where an “on-off” mechanism for drug releases would be optimal, as well as application in a biomedical devices and implants. This chapter explores and molecularly characterizes various EAPs such as polyaniline, polypyrrole, polythiophene, and polyethylene, which can ultimately be incorporated into responsive hydrogels in conjunction with, for example, a desired bioactive, to obtain a stimulus-controlled bioactive release system, which can be actuated by the patient, for enhanced specificity. The institution of hybrids of conducting polymers and hydrogels has also been subjected to increasing investigation as soft EACs, which have been applied, for example, in the improvement of the mechanical and electrical performance of metallic implant electrodes. The various interconnected aspects of EAP-based systems, including their synthesis, proposed modus operandi, physical properties, as well as functionalization approaches for enhancing the performance of these systems, are delineated. The use and comparison of these EAPs and EACs alone, and in conjunction with hydrogels, is further elaborated, together with strategies for integrating electroactive components and hydrogels. Approaches for modeling and explaining the proposed modus operandi of these systems are delineated. A critical review of diverse biomedical systems implementing EAPs and EACs having application in the pharmaceutical and medical industry, specifically, is provided, highlighting their applications, potential advantages, and possible limitations. Ultimately, this chapter illuminates innovative approaches for enabling EAP- and EAC-based systems to attain their full clinical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10:2341–2353

    Article  Google Scholar 

  2. Bar-Cohen Y (2004) Electroactive polymer (EAP) actuators as artificial muscles – reality, potential and challenges, vol PM136, 2nd edn. SPIE Press, Bellingham, WA, pp 1–176

    Book  Google Scholar 

  3. Bar-Cohen Y (2012) Biomimetic muscles and actuators using electroactive polymers (EAP). In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer, Dordrecht, pp 285–290

    Google Scholar 

  4. Lakard B, Ploux L, Anselme K, Lallemand F, Lakard S, Nardin M et al (2009) Effect of ultrasounds on the electrochemical synthesis of polypyrrole, application to the adhesion and growth of biological cells. Bioelectrochemistry 75:148–157

    Article  Google Scholar 

  5. Guiseppi-Elie A (2010) Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 31:2701–2716

    Article  Google Scholar 

  6. Ateh DD, Navsaria HA, Vadgama P (2006) Polypyrrole-based conducting polymers and interactions with biological tissues. J R Soc Interface 3:741–752

    Article  Google Scholar 

  7. Zhou DD, Cui XT, Hines A, Greenberg RJ (2010) Conducting polymers in neural stimulation applications. In: Zhou DD, Greenbaum E (eds) Implantable neural prostheses, vol 2. Springer, Berlin, pp 217–252

    Chapter  Google Scholar 

  8. Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32:876–921

    Article  Google Scholar 

  9. Kirchmeyer S, Reuter K (2005) Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J Mater Chem 15:2077–2088

    Article  Google Scholar 

  10. Wan M (2008) Introduction of conducting polymers. In: Wan M (ed) Conducting polymers with micro or nanometer structure. Springer, Berlin, pp 1–15

    Google Scholar 

  11. Pillay V, Tsai T-S, Choonara YE, du Toit LC, Modi G, Naidoo D, Tomar LK, Tyagi C, Kumar P, Ndesendo VMK (2014) A review of integrating electroactive polymers as responsive systems for specialized drug delivery applications. J Biomat Res A 102:2039–2054

    Google Scholar 

  12. Roentgen WC (1880) About the changes in shape and volume of dielectrics caused by electricity, section III. In: Wiedemann G (ed) Annual physics and chemistry series, vol 11, John Ambrosius Barth Publisher. Leipzig, German, pp 771–786 (In German)

    Google Scholar 

  13. Park IS, Jung K, Kim DSM, Kim KJ (2008) Physical principles of ionic polymer-metal composites as electroactive actuators and sensors, special issue dedicated to EAP. Mater Res Soc MRS Bull 33:190–195

    Article  Google Scholar 

  14. Madden JDW, Madden PG, Hunter IW (2002) Conducting polymer actuators as engineering materials. In: Bar-Cohen Y (ed) Proceeding of the SPIE smart structures and materials 2002: electroactive polymer actuators and devices (EAPAD). SPIE Press, Bellingham, WA, pp 176–190. doi:10.1117/12.475163

    Chapter  Google Scholar 

  15. Cheng Z, Zhang Q (2008) Field-activated electroactive polymers, special issue dedicated to EAP. Mater Res Soc MRS Bull 33:190–195

    Article  Google Scholar 

  16. Inzelt G, Szabo L (1986) The effect of the nature and the concentration of the counter-ions on the electrochemistry of poly (vinylferrocene) polymer film electrodes. Electrochim Acta 31:1381–1387

    Article  Google Scholar 

  17. Bott AW (2001) Electrochemical techniques for the characterization of redox polymers. Curr Sep 19:71–77

    Google Scholar 

  18. History of polymer and plastics for students. American Chemistry Council. http://plastics.americanchemistry.com/Education-Resources/Hands-on-Plastics/Introduction-to-Plastics-Science-Teaching-Resources/History-of-Polymer-and-Plastics-for-Students.html. Accessed on April 7, 2015.

  19. Karyakin AA, Karyakina EE, Schmidt H (1998) Electropolymerized azines: a new group of electroactive polymers. Electroanalysis 11:149–155

    Article  Google Scholar 

  20. Asami R, Atobe M, Fuchigami T (2005) Electropolymerization of an immiscible monomer in aqueous electrolytes using acoustic emulsification. J Am Chem Soc 127:13160–13161

    Article  Google Scholar 

  21. Ali E, Mahmood K, Mansoor K (2006) Electropolymerization of aniline on plastically deformed Pd surface: structure at micro- and nano-scale. Polym J 38:329–334

    Article  Google Scholar 

  22. Wang Z, Kang J, Liu X, Ma Y (2007) Capacitive detection of theophylline based on electropolymerized molecularly imprinted polymer. Int J Polym Anal Charact 12:131–142

    Article  Google Scholar 

  23. Walter MG, Wamser CC (2010) Synthesis and characterization of electropolymerized nanostructured aminophenylporphyrin films. J Phys Chem C 114:7563–7574

    Article  Google Scholar 

  24. Ku CC, Liepins R (1987) Dielectric breakdown in polymers. In: Ku CC, Liepins R (eds) Electrical properties of polymers—chemical principles. Hanser Publishers, Munich, Germany, pp 102–199

    Google Scholar 

  25. Ghasemi-Mobarakeh L et al (2011) Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med 5:e17–e35

    Article  Google Scholar 

  26. Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2010) Applications of conducting polymers and their issues in biomedical engineering. J R Soc Interface 7:S559–S579

    Article  Google Scholar 

  27. Pelto J et al (2010) Electroactivity and biocompatibility of polypyrrolehyaluronic acid multi-walled carbon nanotube composite. J Biomed Mater Res 93A:1056–1067

    Google Scholar 

  28. Lyons MEG, Fay HG, McCabe T, Corish J, Vos JG, Kelly AJ (1990) Charge percolation in electroactive polymer films. J Chem Soc Faraday Trans 86:2905–2910

    Article  Google Scholar 

  29. Bar-Cohen Y (2007) Focus issues on biomimetics using electroactive polymers as artificial muscles. Bioinsp Biomim 2:E01

    Article  Google Scholar 

  30. Bidez PR, Li S, Macdiarmid AG, Venancio EC, Wei Y, Lelkes PI (2006) Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J Biomater Sci Polym Ed 17:199–212

    Article  Google Scholar 

  31. Wang LX, Soczka-Guth T, Havinga E, Mullen K (2003) Poly(phenylenesulfidephenylenamine) (PPSA)—the “compound” of polyphenylenesulfide with polyaniline. Angew Chem 35:1495–1497

    Article  Google Scholar 

  32. Otero TF, Rodriguez J, Angulo E, Santamaria C (1993) Artificial muscles from bilayer structures. Synth Met 55–57:3713–3717

    Article  Google Scholar 

  33. Della Santa A, De Rossi D, Mazzoldi A (1997) Performance and work capacity of a polypyrrole conducting polymer linear actuator. Synth Met 90:93–100

    Article  Google Scholar 

  34. Kincal D, Kumar A, Child A, Reynolds J (1998) Conductivity switching in polypyrrole-coated textile fabric as gas sensors. Synth Met 92:53–56

    Article  Google Scholar 

  35. Lekpittaya P, Yanumet N, Grady BP (2004) Resistivity of conductive polymer-coated fabric. J Appl Polym Sci 92:2629–2636

    Article  Google Scholar 

  36. Lopes A, Martin S, Moraö A, Magrinho M, Gonçalves I (2004) Degradation of a textile dye, C.I. Direct Red 80 by electrochemical processes. Portug Electrochim Acta 22:79–94

    Article  Google Scholar 

  37. Moschou EA, Peteu SF, Bacha LG, Madou MJ, Daunert S (2004) Artificial muscle material with fast electroactuation under neutral pH conditions. Chem Mater 16:2499–2502

    Article  Google Scholar 

  38. Kenji M, Shunzo S, Makoto U, Katsuhiko N (2000) Synthesis of a novel soluble polyaniline using imide super-acid. Nippon Kagakkai Koen Yokoshu 78:114–119

    Google Scholar 

  39. Lindström H, Holmberg A, Magnusson E, Lindquist S, Malmqvist L, Hagfeldt A (2001) A new method for manufacturing nanostructured electrodes on plastic substrates. Nano Lett 1:97–100

    Article  Google Scholar 

  40. McCarthy PA, Juang J, Yang S, Wang H (2002) Synthesis and characterization of water-soluble chiral conducting polymer nanocomposites. Langmuir 18:259–263

    Article  Google Scholar 

  41. Chao D, Lu X, Chen J, Liu X, Zhang W, Wei Y (2006) Synthesis and characterization of electroactive polyamide with amine-capped aniline pentamer and ferrocene in the main chain by oxidative coupling polymerization. Polymer 47:2643–2648

    Article  Google Scholar 

  42. Palaniappan S, Devi SL (2006) Thermal stability and structure of electroactive polyaniline-fluoroboric acid-dodecylhydrogensulfate salt. Polym Degrad Stab 91:2415–2422

    Article  Google Scholar 

  43. Zhang H, Li HX, Cheng HM (2006) Water-soluble multi-walled carbon nanotubes functionalized with sulphonated polyaniline. J Phys Chem B 110:9095–9099

    Article  Google Scholar 

  44. Huang Y, Yu H, Xiao C (2007) pH-sensitive cationic guar gum/poly (acrylic acid) polyelectrolyte hydrogels: swelling and in vitro drug release. Carbohydr Polym 69:774–783

    Article  Google Scholar 

  45. Huang L, Hu J, Lang L, Wang X, Zhang P, Jing X, Wang X, Chen X, Lelkes PI, Macdiarmid AG, Wei Y (2007) Synthesis and characterization of electroactive and biodegradagble ABA block copolymer of polylactide and aniline pentamer. Biomaterials 28:1741–1751

    Article  Google Scholar 

  46. Guo B, Finne-Wistrand A, Albertsson A (2011) Versatile functionalization of polyester hydrogels with electroactive aniline oligomers. J Polym Sci Polym Chem 49:2097–2105

    Article  Google Scholar 

  47. Tsai T, Pillay V, Choonara YE, du Toit LC, Modi G, Naidoo D, Kumar P (2011) A polyvinyl alcohol polyaniline based electro-conductive hydrogel for controlled stimuli-actuable release of indomethacin. Polymers 3:150–172

    Article  Google Scholar 

  48. Yin W, Ruckenstein E (2001) A water-soluble self-doped conducting polypyrrole-based copolymer. J Appl Polym Sci 79:86–89

    Article  Google Scholar 

  49. Bae WJ, Kim KH, Jo WH (2005) A water-soluble and self-doping conducting polypyrrole graft copolymer. Macromolecules 38:1044–1047

    Article  Google Scholar 

  50. Ansari R (2006) Polypyrrole conducting electroactive polymers: synthesis and stability studies. E J Chem 3:186–201

    Article  Google Scholar 

  51. Kim J, Deshpande SD, Yun S, Li Q (2006) A comparative study of conductive polypyrrole and polyaniline coatings on electro-active papers. Polym J 38:659–668

    Article  Google Scholar 

  52. Sutar D, Aswal DK, Gupta SK, Yakhmi JV (2007) Electrochemical actuator from conductive electroactive polymer polypyrrole deposited on gold. Indian J Pure Appl Phys 45:354–357

    Google Scholar 

  53. Fichou D, Ziegler C (1999) Single crystals and thin films. In: Fichou D (ed) Handbook of oligo- and polythiophenes. Wiley-VCH, Weinheim, Germany, pp 185–282

    Google Scholar 

  54. Granstrom M, Harrison MG, Friend RH (1999) Electrooptical polythiophene devices. In: Fichou D (ed) Handbook of oligo- and polythiophenes. Wiley-VCH, Weinheim, Germany, pp 54–58

    Google Scholar 

  55. Gnanakan SRP, Rajasekhar M, Subramania A (2009) Synthesis of polythiophene nanparticles by surfactant-assissted dilute polymerization method for high performance redox supercapacitors. Int J Electrochem Sci 4:1289–1301

    Google Scholar 

  56. Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials. J Phys Chem B 105:8475–8491

    Article  Google Scholar 

  57. Bar-Cohen Y, Kwang J, Kim KJ, Choi HR, Madden JDW (2007) Electroactive polymer materials. Smart Mater Struct 16, E01

    Article  Google Scholar 

  58. Kinoshita Y, Kuzuhara T, Kobayashi M, Ikada Y (1995) Reduction in tumor formation on polyethylene by collagen immobilization. J Long Term Eff Med Implants 5:275–284

    Google Scholar 

  59. Sengothi K, Tan P, Wang J, Lee T, Kang ET, Wang HC (1999) Biocompatibility of polyaniline polymers in tissue: Biomaterial surface interactions. In: AIChE annual meetings, Dallas, TX

    Google Scholar 

  60. Zhao H, Price WE, Too CO, Wallace GG, Zhou D (1996) Parameter influencing transport across conducting electroactive polymer membranes. J Membr Sci 119:199–212

    Article  Google Scholar 

  61. Zhao H, Price WE, Wallace GG (1998) Synthesis, characterization and transport properties of layered conducting electroactive polypyrrole membrane. J Membr Sci 148:161–172

    Article  Google Scholar 

  62. Zhao H, Prince WE, Wallace GG (1994) Effect of counter-ions employed during synthesis on the properties of polypyrrole membranes. J Membr Sci 87:47–56

    Article  Google Scholar 

  63. Cirić-Marjanović G, Dragićević L, Milojević M, Mojović M, Mentus S, Dojćinović B, Marjanović B, Stejskal J (2009) Synthesis and characterization of self-assembled polyaniline nanotubes/silica nanocomposite. J Phys Chem B 113:7116–7127

    Article  Google Scholar 

  64. Sadki S, Schottland P, Brodie N, Sabourand G (2000) The mechanisms of polypyrrole electropolymerization. Chem Soc Rev 29:283–293

    Article  Google Scholar 

  65. Pistoia G, Bagnarelli O, Maiocco M (1978) Evaluation of factors affecting the radical electropolymerization of methylmethacrylate in the presence of HNO3. J Appl Electrochem 9:343–349

    Article  Google Scholar 

  66. Yamada K, Tenshima K, Kobayashi N, Hirohashi R (1997) Electropolymerization of aniline derivatives in non-aqueous solution without a proton donor. J Electroanal Chem 394:71–79

    Article  Google Scholar 

  67. Roeder J, Zucolotto V, Shishatskiy S, Bertolino JR, Nunes SP, Pires ATN (2006) Mixed conductive membrane: Aniline polymerization in an acid SPEEK matrix. J Membr Sci 279:70–75

    Article  Google Scholar 

  68. Hatchett DW, Josowicz M, Janata J (1999) Acid doping of polyaniline: spectroscopic and electrochemical studies. J Phys Chem B 103:10992–10998

    Article  Google Scholar 

  69. Kowalski D, Ueda M, Ohtsuka T (2008) The effect of ultrasonic irradiation during electropolymerization of polypyrrole on corrosive prevention of the coated steel. Corros Sci 50:286–291

    Article  Google Scholar 

  70. Shabani-Nooshabadi M, Ghoreishi SM, Behpour M (2009) Electropolymerized polyaniline coatings on aluminum alloy 3004 and their corrosion protection performance. Electrochim Acta 54:6989–6995

    Article  Google Scholar 

  71. Dimitriev OP (2003) Doping of polyaniline by transition metals: effect of metal cation on film morphology. Synth Mater 142:299–303

    Article  Google Scholar 

  72. Taka T, Laakso J, Levon K (1994) Conductivity and structure of DBSA-protonated polyaniline. Solid State Commun 92:393–396

    Article  Google Scholar 

  73. Mirmohseni A, Wallace GG (2003) Preparation and characterization of processable electroactive polyaniline–poly vinyl alcohol composites. Polymer 44:3523–3528

    Article  Google Scholar 

  74. Palaniappan S, Saravanan C, John A (2005) Emulsion polymerization for preparation of polyaniline-sulfate salt, using non-ionic surfactant. J Macromol Sci Part A 42:891–900

    Article  Google Scholar 

  75. Kinlen PJ, Frushour BG, Ding Y, Menon V (1999) Synthesis and characterization of organically soluble polyaniline and polyaniline block copolymers. Synth Mater 101:758–761

    Article  Google Scholar 

  76. Posadas D, Florit MI (2004) The redox switching of electroactive polymers. J Phys Chem 108:15470–15476

    Article  Google Scholar 

  77. Scampicchio M, Lawrence NS, Arecchi A, Mannino S (2007) Determination of sulphite in wine by linear sweep voltammetry. Electroanalysis 20:444–447

    Article  Google Scholar 

  78. Pathiratne KAS, Skandaraja SS, Jayasena EMCM (2008) Linear sweep voltammetric determination of free chlorines in waters using graphite working electrodes. J Nat Sci Found Sri Lanka 36:25–31

    Google Scholar 

  79. Heinze J (2003) Cyclic voltammetry—“electrochemical spectroscopy”: new analytical method. Angew Chem 23:831–847

    Article  Google Scholar 

  80. Fortunato R, Branco LC, Afonso CAM, Benavente J, Crespo JG (2006) Electrical impedance spectroscopy characterization of supported ionic liquid membranes. J Membr Sci 270:42–49

    Article  Google Scholar 

  81. Gabrielli C, Keddam M, Nadi N, Perrot H (2000) Ion and solvent transport across conducting polymers investigated by AC electrogravimetry. Application to polyaniline. J Electroanal Chem 485:101–113

    Article  Google Scholar 

  82. Lyons MEG (1996) Transport and kinetics in electroactive polymers. In: Prigogine I, Rice SA (eds) Advances in chemical physics: polymeric systems, vol 94. Wiley, Hoboken, NJ, Chapter 5

    Chapter  Google Scholar 

  83. Nguyen TA, Kobot S, Ongarato DM, Wallace GG (1999) The use of chronoamperometry and chemometrics for optimization of conducting polymer sensor arrays. Electroanalysis 11:1327–1332

    Article  Google Scholar 

  84. Peppas NA, Bures CD (2006) Glucose-responsive hydrogels. In: Wnek GE, Bowlin GL (eds) Encyclopedia biomaterials and biomedical engineering. Dekker, New York, NY

    Google Scholar 

  85. Deng K, Zhang P, Ren X, Zhong H, Gou Y, Dong L, Li Q (2009) Synthesis and characterization of a pH/temperature responsive glycine-mediated hydrogel for drug release. Front Mater Sci China 3:374–379

    Article  Google Scholar 

  86. Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T (2010) High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463:339–343

    Article  Google Scholar 

  87. Bikram M, Gobin AM, Whitmire RE, West JL (2007) Temperature sensitive-hydrogel with SiO2–Au nanoshells for controlled drug delivery. J Control Release 123:219–227

    Article  Google Scholar 

  88. Westbrook KK, Qi HJ (2008) Actuator designs using environmentally responsive hydrogels. J Intell Mater Syst Struct 19:597–607

    Article  Google Scholar 

  89. Park C, Orozco-Avila I (2008) Concentrating cellulose from fermented broth using a temperature sensitive hydrogel. Biotechnol Prog 8:521–526

    Article  Google Scholar 

  90. You J, Auguste DT (2010) Conductive, physiologically responsive hydrogels. Langmuir 26:4607–4612

    Article  Google Scholar 

  91. Qui Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–329

    Article  Google Scholar 

  92. Murdan S (2003) Electro-responsive drug delivery from hydrogel. J Control Release 93:1–17

    Article  Google Scholar 

  93. Li H, Yuan Z, Lam KY, Lee HP, Chen J, Hanes J, Fu J (2004) Model development and numerical simulation of electric-stimulus-responsive hydrogels subject to an externally applied electric field. Biosens Bioelectron 19:1097–1107

    Article  Google Scholar 

  94. Li L, Huang C (2007) Electrochemical/electrospray mass spectrometric studies of electrochemically stimulated ATP release from PP/ATP films. J Am Mass Spectrom 18:919–926

    Article  Google Scholar 

  95. Luo R, Li H, Birgersson E, Lam KY (2008) Modeling of electric-stimulus responsive hydrogels immersed in different bathing solutions. J Biomed Mater Res 85A:248–257

    Article  Google Scholar 

  96. Brahim S, Guiseppi-Elie A (2004) Electroconductive hydrogels: electrical and electrochemical properties of polypyrrole-poly (HEMA) composite. Electroanalysis 17:556–570

    Article  Google Scholar 

  97. Ehrick JD, Deo SK, Browning TW, Bachas LG, Madou MJ, Daunert S (2005) Genetically engineered protein in hydrogels tailors stimuli-responsive characters. Nat Mater 4:298–302

    Article  Google Scholar 

  98. Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399:766–769

    Article  Google Scholar 

  99. Pernaut J, Reynolds JR (2000) Use of conducting electroactive polymers for drug delivery and sensing of a bioactive molecular. A redox chemistry approach. J Phys Chem B 104:4080–4090

    Article  Google Scholar 

  100. Zinger B, Miller LL (1984) Timed release of chemicals from polypyrrole films. J Am Chem Soc 106:6861–6863

    Article  Google Scholar 

  101. Pyo M, Reynolds JR (1994) Electrochemically stimulated adenosine 5′-triphosphate (ATP) release through redox switching of conducting polypyrrole films and bilayers. Chem Mater 8:128–133

    Article  Google Scholar 

  102. Otero TF, Padilla J (2004) Anodic shrinking and compaction of polypyrrole blend: electrochemical reduction under conformational relaxation kinetic control. J Electroanal Chem 561:167–171

    Article  Google Scholar 

  103. Moina YG, Andrade C, Molina EM, Florit FV, Rodríguez Presa MI, Posada MJ (2003) Conformational changes during the redox switching of electroactive polymers. J Argentine Chem Soc 91:119–134

    Google Scholar 

  104. Silk T, Tamm J (1996) Voltammetric study of the influence of cations on the redox switching process of halogenide-doped polypyrrole. Electrochim Acta 41:1883–1885

    Article  Google Scholar 

  105. Li L, Hsieh Y (2005) Ultra-fine polyelectrolyte hydrogel fibres from poly (acrylic acid)/poly (vinyl alcohol). Nanotechnology 16:2852–2860

    Article  Google Scholar 

  106. Wang Y, Shen Y, Zhang Y, Yue B, Wu C (2006) pH-sensitive poly acrylic acid (PAA) hydrogels trapped with polysodium-p-styrenesulfonate (PSS). J Macromol Sci Part B 45:563–571

    Article  Google Scholar 

  107. Adnadjevic B, Jovanovic J (2007) Novel approach in investigation of the poly (acrylic acid) hydrogel swelling kinetics in water. J Appl Polym Sci 107:3579–3587

    Article  Google Scholar 

  108. Chansai P, Sirivat A (2008) Electrical field responsive polypyrrole in poly(acrylic acid) hydrogel for transdermal drug delivery. Adv Sci Technol 57:170–175

    Article  Google Scholar 

  109. Sutani K, Kaetsu I, Uchida K (2001) The synthesis and the electric-responsiveness of hydrogel entrapping natural polyelectrolyte. Radiat Phys Chem 61:49–54

    Article  Google Scholar 

  110. Gao F, Reitz FB, Pollack GH (2003) Potentials in anionic polyelectrolyte hydrogel. J Appl Polym Sci 89:1319–1321

    Article  Google Scholar 

  111. Kulkarni RV, Sa B (2009) Electroresponsive polyacrylamide-grafted-xanthan hydrogels for drug delivery. J Bioact Compat Polym 24:368–384

    Article  Google Scholar 

  112. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 43:3–12

    Article  Google Scholar 

  113. Francis S, Kumar M, Varshney L (2004) Radiation synthesis of superabsorbent poly (acrylic-acid)-carrageenan hydrogels. Radiat Phys Chem 69:481–486

    Article  Google Scholar 

  114. Rokhade AP, Patil SA, Aminabhavi TB (2007) Synthesis and characterization of semi-interpenetrating polymer network microsphere of acrylamide grafted dextran and chitosan for controlled release of acyclovir. Carbohydr Polym 6:605–613

    Article  Google Scholar 

  115. Pawde SM, Deshmukh K (2008) Characterization of poly vinyl alcohol/gelatin blend hydrogel films for biomedical applications. J Appl Polym Sci 109:3431–3437

    Article  Google Scholar 

  116. Sui K, Gao S, Wu W, Xia Y (2010) Injectable supermolecular hybrid hydrogels formed by MWNT-grafted-poly ethylene glycol and α-cyclodextrin. J Polym Sci 48:3145–3151

    Article  Google Scholar 

  117. Prashantha KV (2001) IPNs based on polyol modified castor oil polyurethane and poly (HEMA): synthesis, chemical, mechanical and thermal properties. Bull Mater Sci 24:535–538

    Article  Google Scholar 

  118. Lü S, Liu M, Ni B, Gao C (2010) A novel pH- and thermo-sensitive PVP/CMC semi-IPN hydrogel: swelling, phase behavior, and drug release study. J Polym Sci B Polym Phys 48:1749–1756

    Article  Google Scholar 

  119. You J, Almeda D, Ye GJC, Auguste DT (2010) Bioresponsive matrices in drug delivery. J Biol Eng 4:15

    Article  Google Scholar 

  120. Cosnier S (1999) Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosens Bioelectron 14:443–456

    Article  Google Scholar 

  121. Ahuja T, Mir IA, Kumar D, Rajesh (2007) Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 28:791–805

    Article  Google Scholar 

  122. Arora K et al (2006) Application of electrochemically prepared polypyrrole–polyvinyl sulphonate films to DNA biosensor. Biosens Bioelectron 21:1777–1783

    Article  Google Scholar 

  123. Nien PC, Tung TS, Hoa KC (2006) Amperometric glucose biosensor based on entrapment of glucose oxidase in a poly(3,4-ethylenedioxythiophene) film. Electroanalysis 18:1408–1415

    Article  Google Scholar 

  124. Prabhakar N, Arora K, Singh SP, Singh H, Malhotra BD (2007) DNA entrapped polypyrrole–polyvinyl sulfonate film for application to electrochemical biosensor. Anal Biochem 366:71–79

    Article  Google Scholar 

  125. De Giglio E, Sabbatini L, Zambonin PG (1999) Development and analytical characterization of cysteine-grafted polypyrrole films electrosynthesized on Pt and Ti-substrates as precursors of bioactive interfaces. Biomater Sci Polym 10:845–858

    Article  Google Scholar 

  126. Cortés MT, Moreno JC (2003) Artificial muscles based on conducting polymers. e-Polymers 4:1–42

    Google Scholar 

  127. Ghasemi-Mobarakeh L et al (2011) Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med 5:e17–e35

    Article  Google Scholar 

  128. Stauffer WR, Cui XT (2006) Polypyrrole doped with 2 peptide sequences from laminin. Biomaterials 27:2405–2413

    Article  Google Scholar 

  129. Zhang L, Stauffer WR, Jane EP, Sammak PJ, Cui XT (2010) Enhanced differentiation of embryonic and neural stem cells to neuronal fates on laminin peptides doped polypyrrole. Macromol Biosci 10:1456–1464

    Article  Google Scholar 

  130. Gomez N, Lee JY, Nickels JD, Schmidt CE (2007) Micropatterned polypyrrole: a combination of electrical and topographical characteristics for the dtimulation of cells. Adv Funct Mater 17:1645–1653

    Article  Google Scholar 

  131. Li J, Stachowski M, Zhang Z (2015) Application of responsive polymers in implantable medical devices and biosensors. In: Zhang Z (ed) Switchable and responsive surfaces and materials for biomedical applications, Chapter 11. Elsevier, eBook, pp 259–298

    Google Scholar 

  132. Li Y, Neoh NG, Kang ET (2005) Controlled release of heparin from polypyrrole–poly(vinyl alcohol) assembly by electrical stimulation. J Biomed Mater Res 73A:171–181

    Article  Google Scholar 

  133. Wadhwa R, Lagenaur CF, Cui XT (2006) Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J Control Release 110:531–541

    Article  Google Scholar 

  134. Miller LL, Zhou XU (1987) Poly(N-methylpyrrolylium) poly(styrenesu1fonate). A conductive, electrically switchable cation exchanger that cathodically binds and anodically releases dopamine. Macromolecules 20:1594–1597

    Article  Google Scholar 

  135. Kontturi K, Pentti P, Sundholm G (1998) Polypyrrole as a model membrane for drug delivery. J Electroanal Chem 453:231–238

    Article  Google Scholar 

  136. Massoumi B, Entezami AA (2002) Electrochemically stimulated 2-ethylhexyl phosphate (EHP) release through redox switching of conducting polypyrrole film and polypyrrole/poly(N-methylpyrrole) or self-doped polyaniline bilayers. Polym Int 51:555–560

    Article  Google Scholar 

  137. Gomez N, Schmidt CE (2007) Nerve growth factor-immobilized polypyrrole: bioactive electrically conducting polymer for enhanced neurite extension. J Biomed Mater Res A 81:135–149

    Article  Google Scholar 

  138. Lira LM, Cordoba de Torresi SI (2005) Conducting polymer-hydrogel composites for electrochemical release device: synthesis and characterization of semi-interpenetrating polyaniline-polyacrylamide network. Electrochem Commun 7:717–723

    Article  Google Scholar 

  139. George PM, LaVan DA, Burdick JA, Chen CY, Liang E, Langer R (2006) Electrically controlled drug delivery from biotin-doped conductive polypyrrole. Adv Mater 18:577–581

    Article  Google Scholar 

  140. Zhou Q, Miller LL, Valentine JR (1989) Electrochemically controlled binding and release of protonated dimethyldopamine and other cations from poly(N-methyl-pyrrole)/polyanion composite redox polymer. J Electroanal Chem 261:147–167

    Article  Google Scholar 

  141. Pyo M, Reynolds JR (1995) Poly(pyrrole adenosine 5-triphosphate) (PP-ATP) and conducting polymer bilayers for transport of biologically active ions. Synth Mater 71:2233–2236

    Article  Google Scholar 

  142. Kanokpom J, Sumonman N, Ratanaa R, Anuvat S (2008) Electrically controlled release of sulfosalicyclic acid from crosslinked poly (vinyl alcohol) hydrogel. Int J Pharm 356:1–11

    Article  Google Scholar 

  143. Katchalsky A (1964) Polyelectrolytes and their biological interactions. Biophys J 4:9–41

    Article  Google Scholar 

  144. Sorenson MH, Samoshina Y, Claesson P, Alberius P (2009) Sustained release of ibuprofen from polyelectrolyte encapsulated mesoporous carrier. J Disper Sci Technol 30:892–902

    Article  Google Scholar 

  145. Budtova T, Suleimenov I, Frenkel S (1995) Electrokinetics of the contraction of a polyelectrolyte hydrogel under the influence of constant electric current. Polym Gels Netw 3:387–393

    Article  Google Scholar 

  146. Shang J, Shao Z, Chen X (2008) Electrical behavior of a natural polyelectrolyte hydrogel: Chitosan/carboxymethylcellulose hydrogel. Biomacromolecules 9:1208–1213

    Article  Google Scholar 

  147. Grieshaber D, Vörös J, Zambelli T, Ball V, Schaaf P, Voegel JC, Boulmedais F (2008) Swelling and contraction of ferrocyanide-containing polyelectrolyte multilayers upon application of an electric potential. Langmuir 24:13668–13676

    Article  Google Scholar 

  148. Schreyer HB, Gebhart N, Kim KJ, Shahinpoor M (2000) Electrical activation of artificial muscles containing polyacrylonitrile gel fibers. Biomacromolecules 1:642–647

    Article  Google Scholar 

  149. Inoue T, Chen G, Nakamae K, Hoffman AS (1997) A hydrophobically-modified bioadhesive polyelectrolyte gel for drug delivery. J Control Release 49:167–176

    Article  Google Scholar 

  150. Guimard NKE, Sessler JL, Schmidt CE (2009) Toward a biocompatible and biodegradable copolymer incorporating electroactive oligothiophene units. Macromolecules 42:502–511

    Article  Google Scholar 

  151. Sohn K, Shih SR, Park SJ, Kim SJ, Yi B, Han SY, Kim SI (2007) Hysteresis in a carbon nanotube based electroactive polymer microfiber actuator: numerical modeling. J Nanosci Nanotechnol 7:3974–3979

    Article  Google Scholar 

  152. Kornbluh R, Sommer-Larsen P, De Rossi D, Alici G (2011) Guest editorial introduction to the focused section on electroactive polymer mechatronics. IEEE/ASME Trans Mechatron 16:1–8

    Article  Google Scholar 

  153. Thompson BC, Moulton SE, Ding J, Richardson R, Cameron A, O’Leary S, Wallace GG, Clark GM (2006) Optimising the incorporation and release of a neurotrophic factor using conducting polypyrrole. J Control Release 116:285–294

    Article  Google Scholar 

  154. Wadhwa R, Lagenaur CF, Cui XT (2006) Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J Control Release 110:531–541

    Article  Google Scholar 

  155. Thompson BC, Richardson RT, Moulton SE, Evans AJ, O’Leary S, Clark GM, Wallace GG (2010) Conducting polymers, dual neurotrophins and pulsed electrical stimulation—dramatic effects on neurite outgrowth. J Control Release 141:161–167

    Article  Google Scholar 

  156. Sharma M, Waterhouse GI, Loader SW, Garg S, Svirskis D (2013) High surface area polypyrrole scaffolds for tunable drug delivery. Int J Pharm 443:163–168

    Article  Google Scholar 

  157. Chansai P, Sirivat A, Niamlang S, Chotpattananont D, Viravaidya-Pasuwat K (2009) Controlled transdermal iontophoresis of sulfosalicylic acid from polypyrrole/poly(acrylic acid) hydrogel. Int J Pharm 381:25–33

    Article  Google Scholar 

  158. Esrafilzadeh D, Razal JM, Moulton SE, Stewart EM, Wallace GG (2013) Multifunctional conducting fibres with electrically controlled release of ciprofloxacin. J Control Release 169:313–320

    Article  Google Scholar 

  159. Niamlang S, Sirivat A (2009) Electrically controlled release of salicylic acid from poly(p-phenylene vinylene)/polyacrylamide hydrogels. Int J Pharm 371:126–133

    Article  Google Scholar 

  160. Spizzirri UG, Hampel S, Cirillo G, Nicoletta FP, Hassan A, Vittorio O, Picci N, Iemma F (2013) Spherical gelatin/CNTs hybrid microgels as electro-responsive drug delivery systems. Int J Pharm 448:115–122

    Article  Google Scholar 

  161. Tanaka Y, Fujikawa T, Kazoe Y, Kitamori T (2013) An active valve incorporated into a microchip using a high strain electroactive polymer. Sens Actuators B Chem 84:163–169

    Article  Google Scholar 

  162. Biddiss E, Chau T (2006) Electroactive polymeric sensors in hand prostheses: bending response of an ionic polymer metal composite. Medical Eng Phys 28:568–578

    Article  Google Scholar 

  163. Bar-Cohen Y (2001) EAP applications, potential, and challenges. In: Bar-Cohen Y (ed) Electroactive polymer (EAP) actuators as artificial muscles. SPIE Press, Bellingham, WA, pp 616–655

    Google Scholar 

  164. Riley PJ, Wallace GG (1991) Intelligent chemical systems based on conductive electroactive polymers. J Intell Mater Syst Struct 2:228–238

    Article  Google Scholar 

  165. Keshavarzi A, Shahinpoor M, Kim KJ, Lantz J (1999) Blood pressure, pulse rate, and rhythm measurement using ionic polymer–metal composites sensors. In: Bar-Cohen Y (ed) Proceedings of SPIE—The International Society for Optical Engineering, vol 3669., pp 369–376

    Google Scholar 

  166. Gómez-Romero P (2001) Hybrid organic–inorganic materials. In search of synergic activity. Adv Mater 13:3

    Article  Google Scholar 

  167. Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12:608–622

    Article  Google Scholar 

  168. Rajesh B, Thampi KR, Bonard JM, Mathieu HJ, Xanthopoulos M, Viswanathan B (2005) Electronically conducting hybrid material as high performance catalyst support for electrocatalytic application. J Power Sources 141:35–38

    Article  Google Scholar 

  169. Xia H, Cheng D, Xiao C, Chan HSO (2005) Controlled synthesis of polyaniline nanostructures with junctions using in situ self-assembly of magnetic nanoparticles. J Mater Chem 15:4161–4166

    Article  Google Scholar 

  170. Leroux Y, Eang E, Fave C, Trippe G, Lacroix JC (2007) Conducting polymer/gold nanoparticle hybrid materials: a step toward electroactive plasmonic devices. Electrochem Commun 9:1258–1262

    Article  Google Scholar 

  171. Rajesh, Ahuja T, Kumar D (2009) Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens Actuators B 136:275–286

    Article  Google Scholar 

  172. Chen L, Sun LJ, Luan F, Li Y, Liu X (2010) Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. J Power Sources 195:3742–3747

    Article  Google Scholar 

  173. Fu Y, Manthiram A (2012) Core–shell structured sulfur–polypyrrole composite cathodes for lithium–sulfur batteries. RSC Adv 2:5927–5929

    Article  Google Scholar 

  174. Khosla A (2012) Nanoparticle-doped electrically-conducting polymers for flexible nano-micro systems. Electrochem Soc Int (Fall-Winter): 67–70

    Google Scholar 

  175. Chen H, Dong W, Ge J, Wang C, Wu H, Lu W et al (2013) Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. Sci Rep 3:1910

    Google Scholar 

  176. Moral-Vicoa J, Sánchez-Redondo S, Lichtenstein MP, Suñol C, Casañ-Pastor N (2014) Nanocomposites of iridium oxide and conducting polymers as electroactive phases in biological media. Acta Biomater 10:2177–2186

    Article  Google Scholar 

  177. Göbbels K, Kuenzel T, Van Ooyen A, Baumgartner W, Schnakenberg U, Bräunig P (2010) Neuronal cell growth on iridium oxide. Biomaterials 31:1055–1067

    Article  Google Scholar 

  178. Cruz AM, Casañ-Pastor N (2013) Graded conducting titanium–iridium oxide coatings for bioelectrodes in neural systems. Thin Solid Films 534:316–324

    Article  Google Scholar 

  179. Prats-Alfonso E, Abad L, Casañ-Pastor N, Gonzalo-Ruiz J, Baldrich E (2013) Iridium oxide pH sensor for biomedical applications. Case urea-urease in real urine samples. Biosens Bioelectron 39:163–169

    Article  Google Scholar 

  180. Cai W, Gong X, Cao Y (2010) Polymer solar cells: recent development and possible routes for improvement in the performance. Sol Energy Mater Sol Cells 94:114–127

    Article  Google Scholar 

  181. Makris T, Dracopoulos V, Stergiopoulos T, Lianos T (2011) A quasi solid-state dye-sensitized solar cell made of polypyrrole counter electrodes. Electrochim Acta 56:2004–2008

    Article  Google Scholar 

  182. Dietsch B, Tong T (2007) A review—features and benefits of shape memory polymers (SMPs). J Adv Mater 39:3–12

    Google Scholar 

  183. Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43:254–269

    Article  Google Scholar 

  184. Liu YJ, Lv HB, Lan X, Leng JS, Du SY (2009) Review of electro-active shape-memory polymer composite. Compos Sci Technol 209(69):2064–2068

    Article  Google Scholar 

  185. Raja M, Ryu SH, Shanmugharaj AM (2013) Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid) (PLA)/CNT nanocomposites. Eur Polym J 49:3492–3500

    Article  Google Scholar 

  186. Leng JS, Lv HB, Liu YJ, Du SY (2008) Synergistic effect of carbon black and short carbon fiber on shape memory polymer actuation by electricity. J Appl Phys 104:104917

    Article  Google Scholar 

  187. Leng JS, Lan X, Liu YJ, Du SY, Huang WM, Liu N et al (2008) Electrical conductivity of thermoresponsive shape-memory polymer embedded micron sized Ni powder chains. Appl Phys Lett 92:014104

    Article  Google Scholar 

  188. Gunes IS, Jimenez GA, Jana SC (2009) Carbonaceous fillers for shape memory actuation of polyurethane composites by resistive heating. Carbon 47:981–997

    Article  Google Scholar 

  189. Koerner H, Price G, Pearce NA (2004) Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater 3:115–120

    Article  Google Scholar 

  190. Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676

    Article  Google Scholar 

  191. Hiljanen-Vainio M, Kylma J, Hiltunen K, Seppala JV (1997) Rubber toughening of poly(lactide) by blending and block copolymerization. J Appl Polym Sci 63:1335–1343

    Article  Google Scholar 

  192. Wang X-L, Oh I-K, Lee S (2010) Electroactive artificial muscle based on crosslinked PVA/SPTES. Sens Actuators B Chem 150:57–64

    Article  Google Scholar 

  193. Baek S, Green R, Granville A, Martensa P, Poole-Warrena L (2013) Thin film hydrophilic electroactive polymer coatings for bioelectrodes. J Mater Chem B 1:3803

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viness Pillay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

du Toit, L.C., Kumar, P., Choonara, Y.E., Pillay, V. (2016). Electroactive Polymers and Coatings. In: Hosseini, M., Makhlouf, A. (eds) Industrial Applications for Intelligent Polymers and Coatings. Springer, Cham. https://doi.org/10.1007/978-3-319-26893-4_3

Download citation

Publish with us

Policies and ethics