Advertisement

EPiC: Efficient Privacy-Preserving Counting for MapReduce

  • Triet D. Vo-HuuEmail author
  • Erik-Oliver Blass
  • Guevara Noubir
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9466)

Abstract

In the face of an untrusted cloud infrastructure, outsourced data needs to be protected. We present EPiC, a practical protocol for the privacy-preserving evaluation of a fundamental operation on data sets: frequency counting. We show how a general pattern, defined by a Boolean formula, is arithmetized into a multivariate polynomial and used in EPiC. To increase the performance of the system, we introduce a new efficient privacy-preserving encoding with “somewhat homomorphic” properties based on previous work on the Hidden Modular Group assumption. Besides a formal analysis where we prove EPiC’s privacy, we also present implementation and evaluation results. We specifically target Google’s prominent MapReduce paradigm as offered by major cloud providers. Our evaluation performed both locally and in Amazon’s public cloud with up to 1 TB data sets shows only a modest overhead of \(20\,\%\) compared to non-private counting, attesting to EPiC’s efficiency.

Keywords

Cloud Computing Homomorphic Encryption Cloud User MapReduce Framework Differential Privacy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work was partially supported by NSF grant 1218197.

References

  1. 1.
    Amazon Elastic MapReduce. http://aws.amazon.com/elasticmapreduce/
  2. 2.
    Apache. Hadoop (2010). http://hadoop.apache.org/
  3. 3.
    Babai, L., Fortnow, L.: Arithmetization: a new method in structural complexity theory. Comput. Complex. 1(1), 41–66 (1991). ISSN 1016-3328MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  5. 5.
    Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from Ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  6. 6.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: Proceedings of Symposium on Operating System Design and Implementation, San Francisco, USA, pp. 137–150 (2004)Google Scholar
  7. 7.
    Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  8. 8.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp. 169–178 (2009)Google Scholar
  9. 9.
    Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  10. 10.
    Kamara, S., Raykova, M.: Parallel homomorphic encryption. In: Adams, A.A., Brenner, M., Smith, M. (eds.) FC 2013. LNCS, vol. 7862, pp. 213–225. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  11. 11.
    Lauter, K., Naehrig, N., Vaikuntanathan, V.: Can homomorphic encryption be practical?. In: Proceedings of ACM Workshop on Cloud Computing Security, Chicago, USA (2011)Google Scholar
  12. 12.
    Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992). ISSN 0004–5411MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: Proceedings of Symposium on Security and Privacy, Berkeley, USA, pp. 44–55 (2000)Google Scholar
  14. 14.
    Trostle, J., Parrish, A.: Efficient computationally private information retrieval from anonymity or trapdoor groups. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 114–128. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  15. 15.
    Vaikuntanathan, V.: Computing blindfolded: new developments in fully homomorphic encryption. In: FOCS 2011, Washington, DC, USA, pp. 5–16 (2011). ISBN 978-0-7695-4571-4Google Scholar
  16. 16.
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  17. 17.
    Vo-Huu, T.D., Blass, E.-O., Noubir, G.: EPiC Source Code. http://www.ccs.neu.edu/home/noubir/projects/epic

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Triet D. Vo-Huu
    • 1
    Email author
  • Erik-Oliver Blass
    • 2
  • Guevara Noubir
    • 1
  1. 1.Northeastern UniversityBostonUSA
  2. 2.Airbus Group InnovationsMunichGermany

Personalised recommendations