Source Code Driven Decomposition of Object-Oriented Legacy Systems

A Systemic Literature Review and Research Outlook
  • Inese Supulniece
  • Solvita Berzisa
  • Inese Polaka
  • Janis Grabis
  • Egils Meiers
  • Edgars Ozolins
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9459)


Many enterprise applications have been developed over the last three decades therefore known as legacy systems. Usually they are monolith, inflexible, poorly documented and hard to maintain, however they are important to enterprises. The evolution of these systems depends on their decomposability. The purpose of this paper is to summarize existing knowledge, requirements and limitations for object-oriented legacy system decomposition based on systematic literature review. The investigation is performed as a part of the university-industry collaboration research project.


Decomposition Object-oriented Legacy system Literature review Software clustering Reverse engineering Component identification 



The research has been conducted within the framework of European Regional Development Fund’s project “Information and communication technologies competence center” Nr. KC/ (Contract No. L-KC-11-0003, activity 1.3. “The Method of Monolithic System Decomposition According to SOA Principles.”


  1. 1.
    Ali, S., Abdelhak-Djamel, S.: Evolution approaches towards a Service oriented architecture. In: Proceedings of ICMCS 2012, pp. 687–692 (2012)Google Scholar
  2. 2.
    Razavian, M., Lago, P.: A survey of SOA migration in industry. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) Service Oriented Computing. LNCS, vol. 7084, pp. 618–626. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Muhammad, S., Maqbool, O., Abbasi, A.Q.: Evaluating relationship categories for clustering object-oriented software systems. IET Softw. 6, 260–274 (2012)CrossRefGoogle Scholar
  4. 4.
    Kitchenham, B., Charters, S.: Guidelines for Performing Systematic Literature Reviews in Software Engineering. Technical report (2007)Google Scholar
  5. 5.
    International Organization for Standardization. ISO/IEC 24744 :2014, Software Engineering: Metamodel for Development Methodologies (2014)Google Scholar
  6. 6.
    Zhang, Q., Qiu, D., Tian, Q., Sun, L.: Object-oriented software architecture recovery using a new hybrid clustering algorithm. In: Proceedings of FSKD 2010, pp. 2546–2550 (2010)Google Scholar
  7. 7.
    Andritsos, P., Tzerpos, V.: Information-theoretic software clustering. IEEE Trans. Softw. Eng. 31, 150–165 (2005)CrossRefGoogle Scholar
  8. 8.
    Erdemir, U., Tekin, U., Buzluca, F.: Object oriented software clustering based on community structure. In: Proceedings of APSEC 2011, pp. 315–321 (2011)Google Scholar
  9. 9.
    Wang, L., Han, Z., He, J., Wang, H., Li, X.: Recovering design patterns to support program comprehension. In: EAST 2012, pp. 49–54 (2012)Google Scholar
  10. 10.
    Cui, J.F., Chae, H.S.: Applying agglomerative hierarchical clustering algorithms to component identification for legacy systems. Inf. Softw. Technol. 53, 601–614 (2011)CrossRefGoogle Scholar
  11. 11.
    Boussaidi, G.E., Belle, A.B., Vaucher, S., Mili, H.: Reconstructing architectural views from legacy systems. In: Proceedings of WCRE 2012, pp. 345–354 (2012)Google Scholar
  12. 12.
    Belle, A.B., Boussaidi, G.E., Mili, H.: Recovering software layers from object oriented systems. In: Proceedings of ENASE 2014, pp. 78–89 (2014)Google Scholar
  13. 13.
    Andreopoulos, B., An, A., Tzerpos, V., Wang, X.: Multiple layer clustering of large software systems. In: Proceedings of WCRE 2005, pp. 79–88 (2005)Google Scholar
  14. 14.
    Erdemir, U., Buzluca, F.: A learning-based module extraction method for object-oriented systems. J. Syst. Softw. 97, 156–177 (2014)CrossRefGoogle Scholar
  15. 15.
    Mitchell, B.S., Mancoridis, S.: On the automatic modularization of software systems using the bunch tool. IEEE Trans. Softw. Eng. 32(3), 193–208 (2006)CrossRefGoogle Scholar
  16. 16.
    Tzerpos, V., Holt, R.C.: On the stability of software clustering algorithms. In: Proceedings of IWPC 2000, pp. 211–218 (2000)Google Scholar
  17. 17.
    Glorie, M., Zaidman, A., van Deursen, A., Hofland, L.: Splitting a large software repository for easing future software evolution—an industrial experience report. J. Softw. Maint. Evol. Res. Pract. 21, 113–141 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Inese Supulniece
    • 1
  • Solvita Berzisa
    • 1
  • Inese Polaka
    • 1
  • Janis Grabis
    • 1
  • Egils Meiers
    • 2
  • Edgars Ozolins
    • 2
  1. 1.Institute of Information TechnologyRiga Technical UniversityRigaLatvia
  2. 2.Visma EnterpriseRigaLatvia

Personalised recommendations