Skip to main content

Historical Perspective of Advances in Fluorescence Research on Polymer Systems

  • Chapter
  • First Online:
  • 1428 Accesses

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 16))

Abstract

The chapter describes the most important fluorescence studies of polymer systems. It maps the progress in the study of polymer conformations, dynamics, self-assembly, and other properties of polymer systems by different fluorescence methods from the historical perspective. It offers the selection of seminal studies by pioneers of “polymer fluorescence” (as representative as possible), papers that significantly contributed to the solution of important problems, and also the up-to-date studies that follow the world trends of polymer research. Great attention is given to studies of dynamic processes. The end of the chapter addresses the opto-electroactive π-conjugated polymers. This topic exceeds the scope of the chapter and only some aspects of the fluorescence of π-conjugated polymers are reviewed. Special attention is devoted to the application of single-molecule fluorescence spectroscopy in the research of opto-electroactive polymers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Forster T (1959) 10th spiers memorial lecture—transfer mechanisms of electronic excitation. Discuss Faraday Soc 27:7–17

    Article  Google Scholar 

  2. Van Der Meer W, Coker G, Chen S-YS (1994) Resonance energy transfer: theory and data. VCH, New York

    Google Scholar 

  3. Haan SW, Zwanzig R (1978) Forster migration of electronic excitation between randomly distributed molecules. J Chem Phys 68(4):1879–1883. doi:10.1063/1.435913

    Article  CAS  Google Scholar 

  4. Mendelsohn AS, Delacruz MO, Torkelson JM (1993) Correlations in polymer melts and solutions as investigated by fluorescence nonradiative energy-transfer—a novel comparison of theory to experiment by fluorescence intensity decay measurements. Macromolecules 26(25):6789–6799. doi:10.1021/ma00077a015

    Article  CAS  Google Scholar 

  5. Fredrickson GH (1986) Intermolecular correlation-functions from Forster energy-transfer experiments. Macromolecules 19(2):441–447. doi:10.1021/ma00156a035

    Article  CAS  Google Scholar 

  6. de Gennes PG, Pincus PA (1970) Pair correlations in a ferromagnetic colloid. Physik Der Kondensiterten Materie 11(3):189–198

    Google Scholar 

  7. Chen CT, Morawetz H (1989) Characterization of polymer miscibility by fluorescence techniques—blends of styrene copolymers carrying hydrogen-bond donors with polymethacrylates. Macromolecules 22(1):159–164. doi:10.1021/ma00191a031

    Article  CAS  Google Scholar 

  8. Morawetz H (1999) On the versatility of fluorescence techniques in polymer research. J Polym Sci Part A Polym Chem 37(12):1725–1735. doi:10.1002/(sici)1099-0518(19990615)37:12<1725::aid-pola1>3.0.co;2-d

    Article  CAS  Google Scholar 

  9. Baumann J, Fayer MD (1986) Excitation transfer in disordered two-dimensional and anisotropic 3-dimensional systems—effects of spatial geometry on time-resolved observables. J Chem Phys 85(7):4087–4107. doi:10.1063/1.450880

    Article  CAS  Google Scholar 

  10. Ediger MD, Fayer MD (1983) Electronic excited-state transport among molecules distributed randomly in a finite volume. J Chem Phys 78(5):2518–2524. doi:10.1063/1.445003

    Article  CAS  Google Scholar 

  11. Ediger MD, Fayer MD (1983) New approach to probing polymer and polymer blend structure using electronic excitation transport. Macromolecules 16(12):1839–1844. doi:10.1021/ma00246a008

    Article  CAS  Google Scholar 

  12. Hussey DM, Fayer MD (1999) Phase separation in binary and ternary polymer composites studied with electronic excitation transport. Macromolecules 32(20):6638–6645. doi:10.1021/ma9904114

    Article  CAS  Google Scholar 

  13. Keller L, Hussey DM, Fayer MD (1996) Calculations of electronic excitation transfer: applications to ordered phases in polymeric materials. J Phys Chem 100(24):10257–10264. doi:10.1021/jp953710d

    Article  CAS  Google Scholar 

  14. Marcus AH, Fayer MD (1991) Electronic excitation transfer in clustered chromophore systems—calculation of time-resolved observables for intercluster transfer. J Chem Phys 94(8):5622–5630. doi:10.1063/1.460498

    Article  CAS  Google Scholar 

  15. Farinha JPS, Martinho JMG, Yekta A, Winnik MA (1995) Direct nonradiative energy-transfer in polymer interphases—fluorescence decay functions from concentration profiles generated by Fickian diffusion. Macromolecules 28(18):6084–6088. doi:10.1021/ma00122a013

    Article  CAS  Google Scholar 

  16. Blumen A, Manz J (1979) Concentration and time-dependence of the energy-transfer to randomly distributed acceptors. J Chem Phys 71(11):4694–4702. doi:10.1063/1.438253

    Article  CAS  Google Scholar 

  17. Blumen A, Klafter J, Zumofen G (1986) Influence of restricted geometries on the direct energy-transfer. J Chem Phys 84(3):1397–1401. doi:10.1063/1.450481

    Article  CAS  Google Scholar 

  18. Blumen A (1980) Direct energy-transfer via exchange to randomly distributed acceptors. J Chem Phys 72(4):2632–2640. doi:10.1063/1.439408

    Article  CAS  Google Scholar 

  19. Klafter J, Silbey R (1980) Electronic-energy transfer in disordered-systems. J Chem Phys 72(2):843–848. doi:10.1063/1.439236

    Article  CAS  Google Scholar 

  20. Tomba JP, Ye X, Li F, Winnik MA, Lau W (2008) Polymer blend latex films: miscibility and polymer diffusion studied by energy transfer. Polymer 49(8):2055–2064. doi:10.1016/j.polymer.2008.02.024

    Article  CAS  Google Scholar 

  21. Spiro JG, Farinha JPS, Winnik MA (2003) Thermodynamics and morphology of latex blend films. Macromolecules 36(20):7791–7802. doi:10.1021/ma021579j

    Article  CAS  Google Scholar 

  22. Pham HH, Farinha JPS, Winnik MA (2000) Cross-linking, miscibility, and interface structure in blends of poly(2-ethylhexyl methacrylate) copolymers. An energy transfer study. Macromolecules 33(16):5850–5862. doi:10.1021/ma991832o

    Article  CAS  Google Scholar 

  23. Feng JR, Yekta A, Winnik MA (1996) Direct non-radiative energy transfer across a sharp polymer interface. Chem Phys Lett 260(1–2):296–301. doi:10.1016/0009-2614(96)00853-6

    Article  CAS  Google Scholar 

  24. Anghel DF, Toca-Herrera JL, Winnik FM, Rettig W, von Klitzing R (2002) Steady-state fluorescence investigation of pyrene-labeled poly(acrylic acid)s in aqueous solution and in the presence of sodium dodecyl sulfate. Langmuir 18(14):5600–5606. doi:10.1021/la011827p

    Article  CAS  Google Scholar 

  25. Klafter J, Blumen A (1984) Fractal behavior in trapping and reaction. J Chem Phys 80(2):875–877. doi:10.1063/1.446743

    Article  CAS  Google Scholar 

  26. Blumen A, Klafter J, Silbey R (1980) Theoretical-studies of energy-transfer in disordered condensed media. J Chem Phys 72(10):5320–5332. doi:10.1063/1.439023

    Article  CAS  Google Scholar 

  27. Gochanour CR, Fayer MD (1981) Electronic excited-state transport in random-systems—time-resolved fluorescence depolarization measurements. J Phys Chem 85(14):1989–1994. doi:10.1021/j150614a008

    Article  CAS  Google Scholar 

  28. Ni SR, Zhang P, Wang YC, Winnik MA (1994) Energy-transfer studies of the boundary-layer interphase in polystyrene poly(methyl methacrylate) block-copolymer films. Macromolecules 27(20):5742–5750. doi:10.1021/ma00098a031

    Article  CAS  Google Scholar 

  29. Liu YS, Li L, Ni SR, Winnik MA (1993) Recovery of acceptor concentration distribution in a direct energy-transfer experiment. Chem Phys 177(3):579–589

    Article  CAS  Google Scholar 

  30. Yekta A, Winnik MA, Farinha JPS, Martinho JMG (1997) Dipole–dipole electronic energy transfer. Fluorescence decay functions for arbitrary distributions of donors and acceptors. 2. Systems with spherical symmetry. J Phys Chem A 101(10):1787–1792. doi:10.1021/jp9633963

    Article  CAS  Google Scholar 

  31. Dhinojwala A, Wong GK, Torkelson JM (1992) Quantitative-analysis of rotational-dynamics in doped polymers above and below the glass-transition temperature—a novel application of 2nd-order nonlinear optics. Macromolecules 25(26):7395–7397. doi:10.1021/ma00052a050

    Article  CAS  Google Scholar 

  32. Dhinojwala A, Torkelson JM (1994) A reconsideration of the measurement of polymer interdiffusion by fluorescence nonradiative energy-transfer. Macromolecules 27(17):4817–4824. doi:10.1021/ma00095a024

    Article  CAS  Google Scholar 

  33. Bodunov EN, Berberan-Santos MN, Martinho JMG (2002) Electronic energy transfer in polymers labeled at both ends with fluorescent groups. J Lumin 96(2–4):269–278. doi:10.1016/s0022-2313(01)00227-7

    Article  CAS  Google Scholar 

  34. Bodunov EN, Berberan-Santos MN, Martinho JMG (2001) Electronic energy transfer in linear polymers randomly labelled with chromophores. Chem Phys 274(2–3):243–253. doi:10.1016/s0301-0104(01)00545-6

    Article  CAS  Google Scholar 

  35. Frank CW, Harrah LA (1974) Excimer formation in vinyl-polymers. 2. Rigid solutions of poly(2-vinylnaphthalene) and polystyrene. J Chem Phys 61(4):1526–1541. doi:10.1063/1.1682097

    Article  CAS  Google Scholar 

  36. Frank CW (1974) Excimer formation in vinyl-polymers. 3. Fluid and rigid solutions of poly(4-vinylbiphenyl). J Chem Phys 61(5):2015–2022. doi:10.1063/1.1682204

    Article  CAS  Google Scholar 

  37. Frank CW (1975) Observation of relaxation processes near glass-transition by means of excimer fluorescence. Macromolecules 8(3):305–310. doi:10.1021/ma60045a012

    Article  CAS  Google Scholar 

  38. Frank CW, Gashgari MA (1979) Excimer fluorescence as a molecular probe of polymer blend compatibility. 1. Blends of poly(2-vinylnaphthalene) with poly(alkyl methacrylates). Macromolecules 12(1):163–165. doi:10.1021/ma60067a038

    Article  CAS  Google Scholar 

  39. Frank CW, Gashgari M-A, Chutikamontham P, Haverly VJ (1980) Excimer fluorescence as a molecular probe of polymer blend compatibility II. The effect of concentration on blends of aromatic vinyl polymers with poly (alkylmethacrylates). In: Structure and properties of amorphous polymers: proceedings of the second Cleveland symposium on macromolecules, Elsevier, Cleveland, OH, 31 October–2 November 1978, p 187

    Google Scholar 

  40. Semerak SN, Frank CW (1981) Excimer fluorescence as a molecular probe of blend miscibility. 3. Effect of molecular-weight of the host matrix. Macromolecules 14(2):443–449. doi:10.1021/ma50003a039

    Article  CAS  Google Scholar 

  41. Gashgari MA, Frank CW (1981) Excimer fluorescence as a molecular probe of blend miscibility. 4. Effect of temperature in solvent casting. Macromolecules 14(5):1558–1567. doi:10.1021/ma50006a081

    Article  CAS  Google Scholar 

  42. Gelles R, Frank CW (1982) Energy migration in the aromatic vinyl-polymers. 2. Miscible blends of polystyrene with polyvinyl methyl-ether). Macromolecules 15(3):741–747. doi:10.1021/ma00231a012

    Article  CAS  Google Scholar 

  43. Gelles R, Frank CW (1982) Energy migration in the aromatic vinyl-polymers. 3. 3-dimensional migration in polystyrene polyvinyl methyl-ether). Macromolecules 15(3):747–752. doi:10.1021/ma00231a013

    Article  CAS  Google Scholar 

  44. Semerak SN, Frank CW (1983) Excimer fluorescence as a molecular probe of blend miscibility—comparison with differential scanning calorimetry. Adv Chem Ser 203:757–771

    Article  CAS  Google Scholar 

  45. Semerak SN, Frank CW (1984) Excimer fluorescence as a molecular probe of polymer blend miscibility. 6. Effect of molecular-weight in blends of poly(2-vinylnaphthalene) with poly(methyl methacrylate). Macromolecules 17(6):1148–1157. doi:10.1021/ma00136a008

    Article  CAS  Google Scholar 

  46. Thomas JW, Frank CW (1985) Energy migration in the aromatic vinyl-polymers. 4. Blends of poly(2-vinylnaphthalene) with poly(cyclohexyl methacrylate). Macromolecules 18(5):1034–1039. doi:10.1021/ma00147a039

    Article  CAS  Google Scholar 

  47. Kiserow D, Prochazka K, Ramireddy C, Tuzar Z, Munk P, Webber SE (1992) Fluorometric and quasi-elastic light-scattering study of the solubilization of nonpolar low-molar mass compounds into water-soluble block-copolymer micelles. Macromolecules 25(1):461–469. doi:10.1021/ma00027a072

    Article  CAS  Google Scholar 

  48. Prochazka K, Kiserow D, Ramireddy C, Tuzar Z, Munk P, Webber SE (1992) Time-resolved fluorescence studies of the chain dynamics of naphthalene-labeled polystyrene-block-poly(methacrylic acid) micelles in aqueous-media. Macromolecules 25(1):454–460. doi:10.1021/ma00027a071

    Article  CAS  Google Scholar 

  49. Gashgari MA, Frank CW (1988) Excimer fluorescence as a molecular probe of polymer blend miscibility. 7. Nonequilibrium solvent casting effects in blends of poly(2-vinylnaphthalene) with poly(normal-butyl methacrylate) and poly(methyl methacrylate). Macromolecules 21(9):2782–2790. doi:10.1021/ma00187a024

    Article  CAS  Google Scholar 

  50. Tao WC, Frank CW (1990) Excimer fluorescence as a molecular probe of polymer blend miscibility. 9. Effects of guest concentration and annealing in blends of poly(2-vinylnaphthalene) with poly(cyclohexyl methacrylate). Macromolecules 23(13):3275–3283. doi:10.1021/ma00215a013

    Article  CAS  Google Scholar 

  51. Soutar I (1981) Studies of intramolecular excimer formation in synthetic polymers. Ann NY Acad Sci 366(1):24–34. doi:10.1111/j.1749-6632.1981.tb20743.x

    Article  CAS  Google Scholar 

  52. Li XB, Winnik MA, Guillet JE (1983) A fluorescence method to determine the solubility parameters delta-h of soluble polymers at infinite dilution—cyclization dynamics of polymers. Macromolecules 16(6):992–995. doi:10.1021/ma00240a032

    Article  CAS  Google Scholar 

  53. Ediger MD (1991) Time-resolved optical studies of local polymer dynamics. Annu Rev Phys Chem 42:225–250. doi:10.1146/annurev.physchem.42.1.225

    Article  CAS  Google Scholar 

  54. Rouse PE (1953) A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys 21(7):1272–1280. doi:10.1063/1.1699180

    Article  CAS  Google Scholar 

  55. Zimm BH (1956) Dynamics of polymer molecules in dilute solution—viscoelasticity, flow birefringence and dielectric loss. J Chem Phys 24(2):269–278. doi:10.1063/1.1742462

    Article  CAS  Google Scholar 

  56. Glowinkowski S, Gisser DJ, Ediger MD (1990) C-13 nuclear-magnetic-resonance measurements of local segmental dynamics of polyisoprene in dilute-solution—nonlinear viscosity dependence. Macromolecules 23(14):3520–3530. doi:10.1021/ma00216a021

    Article  CAS  Google Scholar 

  57. Pilar J, Labsky J, Marek A, Budil DE, Earle KA, Freed JH (2000) Segmental rotational diffusion of spin-labeled polystyrene in dilute toluene solution by 9 and 250 GHz ESR. Macromolecules 33(12):4438–4444. doi:10.1021/ma0002242

    Article  CAS  Google Scholar 

  58. Pilar J, Labsky J (1991) EPR study of chain rotational-dynamics in dilute aqueous-solutions of spin-labeled poly(methacrylic acid) at different degrees of neutralization. Macromolecules 24(14):4188–4194. doi:10.1021/ma00014a036

    Article  CAS  Google Scholar 

  59. Jones AA, Stockmayer WH (1977) Models for spin relaxation in dilute-solutions of randomly coiled polymers. J Polym Sci Part B Polym Phys 15(5):847–861. doi:10.1002/pol.1977.180150508

    Article  CAS  Google Scholar 

  60. Verdier PH, Stockmayer WH (1962) Monte Carlo calculations on dynamics of polymers in dilute solution. J Chem Phys 36(1):227–235. doi:10.1063/1.1732301

    Article  CAS  Google Scholar 

  61. Schatzki TF (1962) Statistical computation of distribution functions of dimensions of macromolecules. J Polym Sci 57(165):337–356. doi:10.1002/pol.1962.1205716526

    Article  CAS  Google Scholar 

  62. Monnerie L, Geny F (1969) Monte-Carlo simulation of Brownian movement in a macromolecular chain. I. Description of model and simulation. J Chim Phys Phys Chim Biol 66(10):1691

    CAS  Google Scholar 

  63. Valeur B, Jarry JP, Geny F (1975) Dynamics of macromolecular chains. 1. Theory of motions on a tetrahedral lattice. J Polym Sci Part B Poly Phys 13(4):667–674. doi:10.1002/pol.1975.180130401

    Article  Google Scholar 

  64. Valeur B, Monnerie L, Jarry JP (1975) Dynamics of macromolecular chains. 2. Orientation relaxation generated by elementary 3-bond motions and notion of an independent kinetic segment. J Polym Sci Part B Polym Phys 13(4):675–682. doi:10.1002/pol.1975.180130402

    Article  Google Scholar 

  65. Viovy JL, Monnerie L, Brochon JC (1983) Fluorescence polarization decay study of polymer dynamics—a critical discussion of models using synchrotron data. Macromolecules 16(12):1845–1852. doi:10.1021/ma00246a009

    Article  CAS  Google Scholar 

  66. Hall CK, Helfand E (1982) Conformational state relaxation in polymers—time-correlation functions. J Chem Phys 77(6):3275–3282. doi:10.1063/1.444204

    Article  CAS  Google Scholar 

  67. Adolf DB, Ediger MD, Kitano T, Ito K (1992) Viscosity dependence of the local segmental dynamics of anthracene-labeled polyisoprene in dilute-solution. Macromolecules 25(2):867–872. doi:10.1021/ma00028a055

    Article  CAS  Google Scholar 

  68. Kramers HA (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4):8

    Article  Google Scholar 

  69. Courtney SH, Fleming GR (1985) Photoisomerization of stilbene in low viscosity solvents—comparison of isolated and solvated molecules. J Chem Phys 83(1):215–222. doi:10.1063/1.449811

    Article  CAS  Google Scholar 

  70. Velsko SP, Fleming GR (1982) Photochemical isomerization in solution—photophysics of diphenyl butadiene. J Chem Phys 76(7):3553–3562. doi:10.1063/1.443393

    Article  CAS  Google Scholar 

  71. Grote RF, Hynes JT (1980) The stable states picture of chemical-reactions. 2. Rate constants for condensed and gas-phase reaction models. J Chem Phys 73(6):2715–2732. doi:10.1063/1.440485

    Article  CAS  Google Scholar 

  72. Morris RL, Amelar S, Lodge TP (1988) Solvent friction in polymer-solutions and its relation to the high-frequency limiting viscosity. J Chem Phys 89(10):6523–6537. doi:10.1063/1.455372

    Article  CAS  Google Scholar 

  73. von Meerwall ED, Amelar S, Smeltzly MA, Lodge TP (1989) Solvent and probe diffusion in Aroclor solutions of polystyrene, polybutadiene, and polyisoprene. Macromolecules 22(1):295–304. doi:10.1021/ma00191a054

    Article  Google Scholar 

  74. Fytas G, Rizos A, Floudas G, Lodge TP (1990) Solvent mobility in polystyrene Aroclor solutions by depolarized Rayleigh-scattering. J Chem Phys 93(7):5096–5104. doi:10.1063/1.459670

    Article  CAS  Google Scholar 

  75. Rizos A, Fytas G, Lodge TP, Ngai KL (1991) Solvent rotational mobility in polystyrene Aroclor and polybutadiene Aroclor solutions. 2. A photon-correlation spectroscopic study. J Chem Phys 95(4):2980–2987. doi:10.1063/1.461800

    Article  CAS  Google Scholar 

  76. Gisser DJ, Ediger MD (1992) Local polymer and solvent dynamics in Aroclor solutions—implications for solvent modification. Macromolecules 25(4):1284–1293. doi:10.1021/ma00030a013

    Article  CAS  Google Scholar 

  77. Ngai KL, Rizos AK (1994) A connection between the modification of solvent dynamics by polymer in polymer-solutions and component dynamics in miscible polymer blends. Macromolecules 27(16):4493–4497. doi:10.1021/ma00094a010

    Article  CAS  Google Scholar 

  78. Roland CM, Ngai KL (1991) Dynamic heterogeneity in a miscible polymer blend. Macromolecules 24(9):2261–2265. doi:10.1021/ma00009a021

    Article  CAS  Google Scholar 

  79. Tanaka H, Yanagida T, Teramoto A, Fujita H (1967) Studies of concentrated polymer solutions by fluorescence polarization method. I. Polyethylene oxide in water. J Phys Chem 71(8):2416. doi:10.1021/j100867a005

    Article  CAS  Google Scholar 

  80. Fujita H (1961) Free-volume model of diffusion in polymer solutions. Adv Polym Sci 3:1–47

    Article  CAS  Google Scholar 

  81. Hyde PD, Ediger MD, Kitano T, Ito K (1989) Local segmental dynamics of polyisoprene in concentrated-solutions and in the bulk. Macromolecules 22(5):2253–2259. doi:10.1021/ma00195a044

    Article  CAS  Google Scholar 

  82. Viovy JL, Monnerie L (1986) A study of local chain dynamics in concentrated polystyrene solutions using fluorescence anisotropy decay. Polymer 27(2):181–184. doi:10.1016/0032-3861(86)90323-x

    Article  CAS  Google Scholar 

  83. Viovy JL, Frank CW, Monnerie L (1985) Fluorescence anisotropy decay studies of local polymer dynamics in the melt. 2. Labeled model compounds of variable chain-length. Macromolecules 18(12):2606–2613. doi:10.1021/ma00154a042

    Article  CAS  Google Scholar 

  84. Viovy JL, Monnerie L, Merola F (1985) Fluorescence anisotropy decay studies of local polymer dynamics in the melt. 1. Labeled polybutadiene. Macromolecules 18(6):1130–1137. doi:10.1021/ma00148a014

    Article  CAS  Google Scholar 

  85. Veissier V, Viovy JL, Monnerie L (1989) Local dynamics of cis-polyisoprene in dilute-solution and in the melt—a fluorescence anisotropy decay study. Polymer 30(7):1262–1268. doi:10.1016/0032-3861(89)90046-3

    Article  CAS  Google Scholar 

  86. Rutherford H, Soutar I (1980) Phosphorescence studies of relaxation effects in bulk polymers. 2. Emission depolarization study of relaxation mechanisms in poly(methyl methacrylate). J Polym Sci Part B Polym Phys 18(5):1021–1034. doi:10.1002/pol.1980.180180509

    Article  CAS  Google Scholar 

  87. Jarry JP, Monnerie L (1979) Fluorescence depolarization study of the glass-rubber relaxation in a polyisoprene. Macromolecules 12(5):927–932. doi:10.1021/ma60071a028

    Article  CAS  Google Scholar 

  88. Queslel JP, Jarry JP, Monnerie L (1986) Stationary fluorescence depolarization study of mobility of rigid probes in bulk elastomers—motion of dimethylanthracene and 3 trans-diphenylpolyenes inserted in polyisoprene, polybutadiene and random butadiene-styrene copolymers. Polymer 27(8):1228–1234. doi:10.1016/0032-3861(86)90011-x

    Article  CAS  Google Scholar 

  89. Fofana M, Veissier V, Viovy JL, Monnerie L (1989) Investigation of the mobility of polybutadienes. 2. Fluorescence anisotropy decay of rod-like rigid probes. Polymer 30(1):51–57. doi:10.1016/0032-3861(89)90382-0

    Article  CAS  Google Scholar 

  90. Fofana M, Veissier V, Viovy JL, Monnerie L, Johari GP (1988) Studies of the mobility of probes in poly(propylene oxide). 1. Fluorescence anisotropy decay. Polymer 29(2):245–250. doi:10.1016/0032-3861(88)90329-1

    Article  CAS  Google Scholar 

  91. Hyde PD, Ediger MD (1989) Time-resolved optical study of the rotational mobility of small probe molecules in bulk polyisoprene. Macromolecules 22(3):1510–1512. doi:10.1021/ma00193a093

    Article  CAS  Google Scholar 

  92. Hyde PD, Ediger MD (1990) Rotational-dynamics of anthracene and 9,10-dimethylanthracene in polyisoprene. J Chem Phys 92(2):1036–1044. doi:10.1063/1.458166

    Article  CAS  Google Scholar 

  93. Katchalsky A (1951) Solutions of polyelectrolytes and mechanochemical systems. J Polym Sci 7(4):393–412. doi:10.1002/pol.1951.120070403

    Article  CAS  Google Scholar 

  94. Crescenz V, Delben F, Quadrifo F (1972) Calorimetric investigation of poly(methacrylic acid) and poly(acrylic acid) in aqueous-solution. J Polym Sci Part A 2 Polym Phys 10(2):357–368. doi:10.1002/pol.1972.160100215

    Article  Google Scholar 

  95. Delben F, Quadrifo F, Crescenz V (1972) Enthalpy of dissociation of poly(methacrylic acid) in aqueous-solution. Eur Polym J 8(7):933–935. doi:10.1016/0014-3057(72)90054-7

    Article  CAS  Google Scholar 

  96. Arnold R, Overbeek JTG (1950) The dissociation and specific viscosity of polymethacrylic acid. Recueil Des Travaux Chimiques Des Pays-Bas J R Neth Chem Soc 69(2):192–206

    Article  CAS  Google Scholar 

  97. Bednar B, Morawetz H, Shafer JA (1984) Kinetics of the cooperative complex-formation and dissociation of poly(acrylic acid) and poly(oxyethylene). Macromolecules 17(8):1634–1636. doi:10.1021/ma00138a037

    Article  CAS  Google Scholar 

  98. Bednar B, Li ZM, Huang YH, Chang LCP, Morawetz H (1985) Fluorescence study of factors affecting the complexation of poly(acrylic acid) with poly(oxyethylene). Macromolecules 18(10):1829–1833. doi:10.1021/ma00152a007

    Article  CAS  Google Scholar 

  99. Wang YC, Morawetz H (1986) Study of the equilibrium and the kinetics of the fluorescence enhancement on mixing solutions of auramine-o and poly(methacrylic acid). Macromolecules 19(7):1925–1930. doi:10.1021/ma00161a024

    Article  CAS  Google Scholar 

  100. Horsky J, Morawetz H (1988) Kinetics of the conformational transition of poly(methacrylic acid) after a ph jump. 2. Studies of nonradiative energy-transfer. Makromol Chem-Macromol Chem Phys 189(10):2475–2483

    Article  CAS  Google Scholar 

  101. Ghiggino K, Tan K, Phillips D (1985) Polymer photophysics. Chapman and Hall, London

    Google Scholar 

  102. Dobrynin AV, Rubinstein M, Obukhov SP (1996) Cascade of transitions of polyelectrolytes in poor solvents. Macromolecules 29(8):2974–2979. doi:10.1021/ma9507958

    Article  CAS  Google Scholar 

  103. Limpouchova Z, Prochazka K, Fidler V, Dvorak J, Bednar B (1993) Molecular-movements and dynamics in solutions studied by fluorescence depolarization measurement. Collect Czech Chem Commun 58(2):213–233. doi:10.1135/cccc19930213

    Article  CAS  Google Scholar 

  104. Bednar B, Trnena J, Svoboda P, Vajda S, Fidler V, Prochazka K (1991) Time-resolved fluorescence study of chain dynamics. 1. Poly(methacrylic acid) in dilute water solutions. Macromolecules 24(8):2054–2059. doi:10.1021/ma00008a053

    Article  CAS  Google Scholar 

  105. Prochazka K, Limpouchova Z, Uhlik F, Kosovan P, Matejicek P, Stepanek M, Uchman M, Kuldova J, Sachl R, Humpolickova J, Hof M, Muller A, Borisov O (2011) Fluorescence spectroscopy as a tool for investigating the self-organized polyelectrolyte systems. Self organized nanostructures of amphiphilic block copolymers I. 241:187–249. doi:10.1007/12_2010_5

  106. Kosovan P, Limpouchova Z, Prochazka K (2006) Molecular dynamics simulation of time-resolved fluorescence anisotropy decays from labeled polyelectrolyte chains. Macromolecules 39(9):3458–3465. doi:10.1021/ma052557a

    Article  CAS  Google Scholar 

  107. Soutar I, Swanson L (1994) Luminescence studies of polyelectrolyte behavior in solution. 3. Time-resolved fluorescence anisotropy measurements of the conformational behavior of poly(methacrylic acid) in dilute aqueous-solutions. Macromolecules 27(15):4304–4311. doi:10.1021/ma00093a035

    Article  CAS  Google Scholar 

  108. Chee CK, Rimmer S, Shaw DA, Soutar I, Swanson L (2001) Manipulating the thermoresponsive behavior of poly(N-isopropylacrylamide). 1. On the conformational behavior of a series of N-isopropylacrylamide—styrene statistical copolymers. Macromolecules 34(21):7544–7549. doi:10.1021/ma010360m

    Article  CAS  Google Scholar 

  109. Barker IC, Cowie JMG, Huckerby TN, Shaw DA, Soutar I, Swanson L (2003) Studies of the “smart” thermoresponsive behavior of copolymers of N-isopropylacrylamide and N,N-dimethylacrylamide in dilute aqueous solution. Macromolecules 36(20):7765–7770. doi:10.1021/ma034250m

    Article  CAS  Google Scholar 

  110. Chee CK, Rimmer S, Soutar I, Swanson L (2006) Fluorescence investigations of the conformational behaviour of poly(N-vinylcaprolactam). React Funct Polym 66(1):1–11. doi:10.1016/j.reactfunctpoplym.2005.07.007

    Article  CAS  Google Scholar 

  111. Taylor LD, Cerankowski LD (1975) Preparation of films exhibiting a balanced temperature-dependence to permeation by aqueous-solutions—study of lower consolute behavior. J Polym Sci Part A Polym Chem 13(11):2551–2570. doi:10.1002/pol.1975.170131113

    Article  CAS  Google Scholar 

  112. Schild HG (1992) Poly (n-isopropylacrylamide)—experiment, theory and application. Prog Polym Sci 17(2):163–249. doi:10.1016/0079-6700(92)90023-r

    Article  CAS  Google Scholar 

  113. Feil H, Bae YH, Feijen J, Kim SW (1993) Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of n-isopropylacrylamide copolymers. Macromolecules 26(10):2496–2500. doi:10.1021/ma00062a016

    Article  CAS  Google Scholar 

  114. Shibayama M, Mizutani S, Nomura S (1996) Thermal properties of copolymer gels containing N-isopropylacrylamide. Macromolecules 29(6):2019–2024. doi:10.1021/ma951390q

    Article  CAS  Google Scholar 

  115. Prange MM, Hooper HH, Prausnitz JM (1989) Thermodynamics of aqueous systems containing hydrophilic polymers or gels. AlChE J 35(5):803–813. doi:10.1002/aic.690350511

    Article  CAS  Google Scholar 

  116. Otake K, Inomata H, Konno M, Saito S (1990) Thermal-analysis of the volume phase-transition with n-isopropylacrylamide gels. Macromolecules 23(1):283–289. doi:10.1021/ma00203a049

    Article  CAS  Google Scholar 

  117. Kubota K, Fujishige S, Ando I (1990) Single-chain transition of poly(n-isopropylacrylamide) in water. J Phys Chem 94(12):5154–5158. doi:10.1021/j100375a070

    Article  CAS  Google Scholar 

  118. Inomata H, Goto S, Saito S (1990) Phase-transition of n-substituted acrylamide gels. Macromolecules 23(22):4887–4888. doi:10.1021/ma00224a023

    Article  CAS  Google Scholar 

  119. Lin SY, Chen KS, Liang RC (1999) Thermal micro ATR/FT-IR spectroscopic system for quantitative study of the molecular structure of poly(N-isopropylacrylamide) in water. Polymer 40(10):2619–2624. doi:10.1016/s0032-3861(98)00512-6

    Article  CAS  Google Scholar 

  120. Lin SY, Chen KS, Run-Chu L (1999) Drying methods affecting the particle sizes, phase transition, deswelling/reswelling processes and morphology of poly(N-isopropylacrylamide) microgel beads. Polymer 40(23):6307–6312. doi:10.1016/s0032-3861(98)00872-6

    Article  CAS  Google Scholar 

  121. Yamamoto I, Iwasaki K, Hirotsu S (1989) Light-scattering study of condensation of poly(n-isopropylacrylamide) chain. J Phys Soc Jpn 58(1):210–215. doi:10.1143/jpsj.58.210

    Article  CAS  Google Scholar 

  122. Wu C, Zhou SQ (1995) Thermodynamically stable globule state of a single poly(n-isopropylacrylamide) chain in water. Macromolecules 28(15):5388–5390. doi:10.1021/ma00119a036

    Article  CAS  Google Scholar 

  123. Winnik FM (1990) Phase-transition of aqueous poly-(n-isopropylacrylamide) solutions—a study by nonradiative energy-transfer. Polymer 31(11):2125–2134. doi:10.1016/0032-3861(90)90085-d

    Article  CAS  Google Scholar 

  124. Chee CK, Rimmer S, Soutar I, Swanson L (1997) Time-resolved fluorescence anisotropy studies of the temperature-induced intramolecular conformational transition of poly(N-isopropylacrylamide) in dilute aqueous solution. Polymer 38(2):483–486. doi:10.1016/s0032-3861(96)00636-2

    Article  CAS  Google Scholar 

  125. Chee CK, Hunt BJ, Rimmer S, Soutar I, Swanson L (2011) Time-resolved fluorescence anisotropy studies of the cononsolvency of poly(N-isopropyl acrylamide) in mixtures of methanol and water. Soft Matter 7(3):1176–1184. doi:10.1039/c0sm00836b

    Article  CAS  Google Scholar 

  126. Cowie JMG, Mohsin MA, McEwen IJ (1987) Alcohol water cosolvent systems for poly(methyl methacrylate). Polymer 28(9):1569–1572. doi:10.1016/0032-3861(87)90360-0

    Article  CAS  Google Scholar 

  127. Winnik FM, Ringsdorf H, Venzmer J (1990) Methanol water as a co-nonsolvent system for poly(n-isopropylacrylamide). Macromolecules 23(8):2415–2416. doi:10.1021/ma00210a048

    Article  CAS  Google Scholar 

  128. Tanaka F, Koga T, Kojima H, Winnik FA (2009) Temperature- and tension-induced coil-globule transition of poly(N-isopropylacrylamide) chains in water and mixed solvent of water/methanol. Macromolecules 42(4):1321–1330. doi:10.1021/ma801982e

    Article  CAS  Google Scholar 

  129. Zhang GZ, Wu C (2001) The water/methanol complexation induced reentrant coil-to-globule-to-coil transition of individual homopolymer chains in extremely dilute solution. J Am Chem Soc 123(7):1376–1380. doi:10.1021/ja003889s

    Article  CAS  Google Scholar 

  130. Chee CK, Rimmer S, Soutar I, Swanson L (2001) Fluorescence investigations of the thermally induced conformational transition of poly(N-isopropylacrylamide). Polymer 42(12):5079–5087. doi:10.1016/s0032-3861(00)00821-1

    Article  CAS  Google Scholar 

  131. Chee C-K, Hunt BJ, Rimmer S, Rutkaite R, Soutar I, Swanson L (2009) Manipulating the thermoresponsive behaviour of poly(N-isopropylacrylamide) 3. On the conformational behaviour of N-isopropylacrylamide graft copolymers. Soft Matter 5(19):3701–3712. doi:10.1039/b903356d

    Article  CAS  Google Scholar 

  132. Riess G (2003) Micellization of block copolymers. Prog Polym Sci 28(7):1107–1170. doi:10.1016/s0079-6700(03)00015-7

    Article  CAS  Google Scholar 

  133. Kabanov AV, Batrakova EV, Alakhov VY (2002) Pluronic (R) block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 82(2–3):189–212. doi:10.1016/s0168-3659(02)00009-3

    Article  CAS  Google Scholar 

  134. Hamley IW (2003) Nanotechnology with soft materials. Angew Chem Int Ed 42(15):1692–1712. doi:10.1002/ange.200200546

    Article  CAS  Google Scholar 

  135. Kwon GS, Kataoka K (2012) Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev 64:237–245. doi:10.1016/j.addr.2012.09.016

    Article  Google Scholar 

  136. Matejicek P, Podhajecka K, Humpolickova J, Uhlik F, Jelinek K, Limpouchova Z, Prochazka K, Spirkova M (2004) Polyelectrolyte behavior of polystyrene-block-poly(methacrylic acid) micelles in aqueous solutions at low ionic strength. Macromolecules 37(26):10141–10154. doi:10.1021/ma049258q

    Article  CAS  Google Scholar 

  137. Plestil J, Kriz J, Tuzar Z, Prochazka K, Melnichenko YB, Wignall GD, Talingting MR, Munk P, Webber SE (2001) Small-angle neutron scattering study of onion-type micelles. Macromol Chem Phys 202(4):553–563. doi:10.1002/1521-3935(20010201)202:4<553::aid-macp553>3.0.co;2-6

    Article  CAS  Google Scholar 

  138. Prochazka K, Glockner G, Hoff M, Tuzar Z (1984) Micellization of a radial copolymer with 4 polystyrene-block-polybutadiene branches. Makromol Chem-Macromol Chem Phys 185(6):1187–1197

    Article  CAS  Google Scholar 

  139. Uchman M, Stepanek M, Prochazka K, Mountrichas G, Pispas S, Voets IK, Walther A (2009) Multicompartment nanoparticles formed by a heparin-mimicking block terpolymer in aqueous solutions. Macromolecules 42(15):5605–5613. doi:10.1021/ma9008115

    Article  CAS  Google Scholar 

  140. Wilhelm M, Zhao CL, Wang YC, Xu RL, Winnik MA, Mura JL, Riess G, Croucher MD (1991) Polymer micelle formation. 3. Poly(styrene-ethylene oxide) block copolymer micelle formation in water—a fluorescence probe study. Macromolecules 24(5):1033–1040. doi:10.1021/ma00005a010

    Article  CAS  Google Scholar 

  141. Prochazka K, Kiserow DJ, Webber SE (1995) Fluorescence polarization study of polymer micelles. Acta Polym 46(4):277–290. doi:10.1002/actp.1995.010460401

    Article  CAS  Google Scholar 

  142. Stepanek M, Matejicek P, Humpolickova J, Prochazka K (2005) Reversible aggregation of polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) block copolymer micelles in acidic aqueous solutions. Langmuir 21(23):10783–10790. doi:10.1021/la0516680

    Article  CAS  Google Scholar 

  143. Sachl R, Stepanek M, Prochazka K, Humpolickova J, Hof M (2008) Fluorescence study of the solvation of fluorescent probes prodan and laurdan in poly(epsilon-caprolactone)-block-poly(ethylene oxide) vesicles in aqueous solutions with tetrahydrofurane. Langmuir 24(1):288–295. doi:10.1021/la702277t

    Article  CAS  Google Scholar 

  144. Uchman M, Gradzielski M, Angelov B, Tosner Z, Oh J, Chang T, Stepanek M, Prochazka K (2013) Thermodynamic and kinetic aspects of coassembly of PEO-PMAA block copolymer and DPCl surfactants into ordered nanoparticles in aqueous solutions studied by ITC, NMR, and time-resolved SAXS techniques. Macromolecules 46(6):2172–2181. doi:10.1021/ma302503w

    Article  CAS  Google Scholar 

  145. Kriz J (2012) Interaction of premicellar states of a PEO-PPO-PEO triblock copolymer with partially hydrophobic substances: NMR study. J Phys Chem B 116(14):4386–4393. doi:10.1021/jp3003323

    Article  CAS  Google Scholar 

  146. Tuzar Z, Kadlec P, Stepanek P, Kriz J, Nallet F, Noirez L (2008) Micelles of a diblock copolymer of styrene and ethylene oxide in mixtures of 2,6-lutidine and water. Langmuir 24(24):13863–13865. doi:10.1021/la803397g

    Article  CAS  Google Scholar 

  147. Szajdzinska-Pietek E, Schlick S (2005) Self-assembling of ion-containing polymers and surfactants in aqueous solutions studied by ESR and fluorescence probes. J Mol Liq 117(1–3):153–164. doi:10.1016/j.molliq.2004.08.007

    Article  CAS  Google Scholar 

  148. Matejicek P, Humpolickova J, Prochazka K, Tuzar Z, Spirkova M, Hof M, Webber SE (2003) Hybrid block copolymer micelles with partly hydrophobically modified polyelectrolyte shells in polar and aqueous media: experimental study using fluorescence correlation spectroscopy, time-resolved fluorescence, light scattering, and atomic force microscopy. J Phys Chem B 107(32):8232–8240. doi:10.1021/jp022221s

    Article  CAS  Google Scholar 

  149. Matejicek P, Stepanek M, Uchman M, Prochazka K, Spirkova M (2006) Atomic force microscopy and light scattering study of onion-type micelles formed by polystyrene-block-poly(2-vinylpyridine) and poly(2-vinylpyridine)-block-poly(ethylene oxide) copolymers in aqueous solutions. Collect Czech Chem Commun 71(5):723–738. doi:10.1135/cccc20060723

    Article  CAS  Google Scholar 

  150. Tian MM, Qin AW, Ramireddy C, Webber SE, Munk P, Tuzar Z, Prochazka K (1993) Hybridization of block-copolymer micelles. Langmuir 9(7):1741–1748. doi:10.1021/la00031a022

    Article  CAS  Google Scholar 

  151. Pacovska M, Prochazka K, Tuzar Z, Munk P (1993) Formation of block-copolymer micelles—a sedimentation study. Polymer 34(21):4585–4588. doi:10.1016/0032-3861(93)90171-6

    Article  CAS  Google Scholar 

  152. Stepanek M, Podhajecka K, Tesarova E, Prochazka K, Tuzar Z, Brown W (2001) Hybrid polymeric micelles with hydrophobic cores and mixed polyelectrolyte/nonelectrolyte shells in aqueous media. 1. Preparation and basic characterization. Langmuir 17(14):4240–4244. doi:10.1021/la010246x

    Article  CAS  Google Scholar 

  153. Podhajecka K, Stepanek M, Prochazka K, Brown W (2001) Hybrid polymeric micelles with hydrophobic cores and mixed polyelectrolyte/nonelectrolyte shells in aqueous media. 2. Studies of the shell behavior. Langmuir 17(14):4245–4250. doi:10.1021/la010247p

    Article  CAS  Google Scholar 

  154. Matejicek P, Zednik J, Uselova K, Plestil J, Fanfrlik J, Nykanen A, Ruokolainen J, Hobza P, Prochazka K (2009) Stimuli-responsive nanoparticles based on interaction of metallacarborane with poly(ethylene oxide). Macromolecules 42(13):4829–4837. doi:10.1021/ma900484y

    Article  CAS  Google Scholar 

  155. Humpolickova J, Prochazka K, Hof M, Tuzar Z, Spirkova M (2003) Fluorescence correlation spectroscopy using octadecylrhodamine B as a specific micelle-binding fluorescent tag; light scattering and tapping mode atomic force microscopy studies of amphiphilic water-soluble block copolymer micelles. Langmuir 19(10):4111–4119. doi:10.1021/la0209334

    Article  CAS  Google Scholar 

  156. Gehlen MH, Deschryver FC (1993) Time-resolved fluorescence quenching in micellar assemblies. Chem Rev 93(1):199–221. doi:10.1021/cr00017a010

    Article  CAS  Google Scholar 

  157. Van der Auweraer M, Roelants E, Verbeeck A, De Schryver F (1989) Fluorescence quenching in micellar solutions by charged and neutral quenchers. In: Mittal K (ed) Surfactants in solution. Springer, New York, pp 141–157

    Chapter  Google Scholar 

  158. Winnik FM (1993) Photophysics of preassociated pyrenes in aqueous polymer-solutions and in other organized media. Chem Rev 93(2):587–614. doi:10.1021/cr00018a001

    Article  CAS  Google Scholar 

  159. Yip J, Duhamel J, Qiu XP, Winnik FM (2011) Long-range polymer chain dynamics of pyrene-labeled poly(N-isopropylacrylamide)s studied by fluorescence. Macromolecules 44(13):5363–5372. doi:10.1021/ma2007865

    Article  CAS  Google Scholar 

  160. Duhamel J (2012) New insights in the study of pyrene excimer fluorescence to characterize macromolecules and their supramolecular assemblies in solution. Langmuir 28(16):6527–6538. doi:10.1021/la2047646

    Article  CAS  Google Scholar 

  161. Almgren M, Alsins J, Mukhtar E, Vanstam J (1988) Fluorescence quenching dynamics in rod like micelles. J Phys Chem 92(15):4479–4483. doi:10.1021/j100326a046

    Article  CAS  Google Scholar 

  162. Bales BL, Almgren M (1995) Fluorescence quenching of pyrene by copper(ii) in sodium dodecyl-sulfate micelles—effect of micelle size as controlled by surfactant concentration. J Phys Chem 99(41):15153–15162. doi:10.1021/j100041a035

    Article  CAS  Google Scholar 

  163. Ham JS (1953) A new electronic state in benzene. J Chem Phys 21(4):756–758. doi:10.1063/1.1699014

    Article  CAS  Google Scholar 

  164. Prochazka K, Martin TJ, Munk P, Webber SE (1996) Polyelectrolyte poly(tert-butyl acrylate)-block-poly(2-vinylpyridine) micelles in aqueous media. Macromolecules 29(20):6518–6525. doi:10.1021/ma960630e

    Article  CAS  Google Scholar 

  165. Teng Y, Morrison ME, Munk P, Webber SE, Prochazka K (1998) Release kinetics studies of aromatic molecules into water from block polymer micelles. Macromolecules 31(11):3578–3587. doi:10.1021/ma971721u

    Article  CAS  Google Scholar 

  166. Stepanek M, Prochazka K (1999) Fluorometric studies of the polyelectrolyte shell of block copolymer micelles in aqueous media. Langmuir 15(26):8800–8806. doi:10.1021/la9903651

    Article  CAS  Google Scholar 

  167. Stepanek M, Krijtova K, Prochazka K, Teng Y, Webber SE (1999) Interaction of fluorescent surfactant 5-(N-octadecanoyl)aminofluorescein with polystyrene-block-poly(methacrylic acid) micelles. Colloids Surf A Physicochem Eng Asp 147(1–2):79–87. doi:10.1016/s0927-7757(98)00742-0

    Article  CAS  Google Scholar 

  168. Stepanek M, Krijtova K, Prochazka K, Teng Y, Webber SE, Munk P (1998) Solubilization and release of hydrophobic compounds from block copolymer micelles. I. Partitioning of pyrene between polyelectrolyte micelles and the aqueous phase. Acta Polym 49(2–3):96–102

    Article  CAS  Google Scholar 

  169. Stepanek M, Krijtova K, Limpouchova Z, Prochazka K, Teng Y, Munk P, Webber S (1998) Solubilization and release of hydrophobic compounds from block copolymer micelles. II. Release of pyrene from polyelectrolyte micelles under equilibrium conditions. Acta Polym 49(2–3):103–107

    Article  CAS  Google Scholar 

  170. Stepanek M, Humpolickova J, Prochazka K, Hof M, Tuzar Z, Spirkova M, Wolff T (2003) Light scattering, atomic force microscopy and fluorescence correlation spectroscopy studies of polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) micelles. Collect Czech Chem Commun 68(11):2120–2138. doi:10.1135/cccc20032120

    Article  CAS  Google Scholar 

  171. Stepanek M, Matejicek P, Humpolickova J, Havrankova J, Podhajecka K, Spirkova M, Tuzar Z, Tsitsilianis C, Prochazka K (2005) New insights on the solution behavior and self-assembly of polystyrene/poly(2-vinylpyridine) ‘hairy’ heteroarm star copolymers with highly asymmetric arms in polar organic and aqueous media. Polymer 46(23):10493–10505. doi:10.1016/j.polymer.2005.08.031

    Article  CAS  Google Scholar 

  172. Ramireddy C, Tuzar Z, Prochazka K, Webber SE, Munk P (1992) Styrene tert-butyl methacrylate and styrene methacrylic-acid block copolymers—synthesis and characterization. Macromolecules 25(9):2541–2545. doi:10.1021/ma00035a037

    Article  CAS  Google Scholar 

  173. Prochazka K, Limpouchova Z (1994) Conformations of insoluble blocks in swollen micellar cores of multimolecular block-copolymer micelles studied by Monte-Carlo simulation technique. Collect Czech Chem Commun 59(4):782–802. doi:10.1135/cccc19940782

    Article  CAS  Google Scholar 

  174. Viduna D, Limpouchova Z, Prochazka K (1997) Conformations of self-avoiding tethered chains and nonradiative energy transfer and migration in dense and constrained systems. A model for cores of polymeric micelles. Macromolecules 30(23):7263–7272. doi:10.1021/ma970002c

    Article  CAS  Google Scholar 

  175. Limpouchova Z, Viduna D, Prochazka K (1997) Mixed systems of tethered chains in spherical volumes. A model for cores of mixed copolymer micelles. Macromolecules 30(25):8027–8035. doi:10.1021/ma970001k

    Article  CAS  Google Scholar 

  176. Prochazka K (1995) Monte-Carlo study of tethered chains in spherical volumes. J Phys Chem 99(38):14108–14116. doi:10.1021/j100038a050

    Article  CAS  Google Scholar 

  177. Matejicek P, Uhlik F, Limpouchova Z, Prochazka K, Tuzar Z, Webber S (2002) Experimental study of hydrophobically modified amphiphilic block copolymer micelles using light scattering and nonradiative excitation energy transfer. Macromolecules 35(25):9487–9496. doi:10.1021/ma012074g

    Article  CAS  Google Scholar 

  178. Uhlik F, Limpouchova Z, Matejicek P, Prochazka K, Tuzar Z, Webber SE (2002) Nonradiative excitation energy transfer in hydrophobically modified amphiphilic block copolymer micelles. Theoretical model and Monte Carlo simulations. Macromolecules 35(25):9497–9505. doi:10.1021/ma012073o

    Article  CAS  Google Scholar 

  179. Uhlik F, Limpouchova Z, Jelinek K, Prochazka K (2003) A Monte Carlo study of shells of hydrophobically modified amphiphilic copolymer micelles in polar solvents. J Chem Phys 118(24):11258–11264. doi:10.1063/1.1575732

    Article  CAS  Google Scholar 

  180. Uhlik F, Limpouchova Z, Jelinek K, Prochazka K (2004) Polyelectrolyte shells of copolymer micelles in aqueous solutions: a Monte Carlo study. J Chem Phys 121(5):2367–2375. doi:10.1063/1.1763571

    Article  CAS  Google Scholar 

  181. Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DDC, Dos Santos DA, Bredas JL, Logdlund M, Salaneck WR (1999) Electroluminescence in conjugated polymers. Nature 397(6715):121–128. doi:10.1038/16393

    Article  CAS  Google Scholar 

  182. McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100(7):2537–2574. doi:10.1021/cr9801014

    Article  CAS  Google Scholar 

  183. Coakley KM, McGehee MD (2004) Conjugated polymer photovoltaic cells. Chem Mater 16(23):4533–4542. doi:10.1021/cm049654n

    Article  CAS  Google Scholar 

  184. Facchetti A (2011) pi-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem Mater 23(3):733–758. doi:10.1021/cm102419z

    Article  CAS  Google Scholar 

  185. Nakamura M, Tabata M, Sone T, Mawatari Y, Miyasaka A (2002) Photoinduced cis-to-trans isomerization of poly(2-ethynylthiophene) prepared with a Rh(norbornadiene)Cl (2) catalyst. H-1 NMR, UV, and ESR studies. Macromolecules 35(6):2000–2004. doi:10.1021/ma0101198

    Article  CAS  Google Scholar 

  186. Sun JZ, Chen HZ, Xu RS, Wang M, Lam JWY, Tang BZ (2002) Electric field induced cis-to-trans isomerization of polyphenylacetylene in solid state. Chem Commun 11:1222–1223. doi:10.1039/b200830k

    Article  CAS  Google Scholar 

  187. Lee PPS, Lam JWY, Li BS, Poon TWH, Tang BZ (1999) Ultrasound-induced isomerization of stereoregular poly(phenylacetylene). Abstr Pap Am Chem Soc 218:U425–U425

    Google Scholar 

  188. Lam JWY, Tang BZ (2005) Functional polyacetylenes. Acc Chem Res 38(9):745–754. doi:10.1021/ar040012f

    Article  CAS  Google Scholar 

  189. Tang BZ, Chen HZ, Xu RS, Lam JWY, Cheuk KKL, Wong HNC, Wang M (2000) Structure-property relationships for photoconduction in substituted polyacetylenes. Chem Mater 12(1):213–221. doi:10.1021/cm990552k

    Article  CAS  Google Scholar 

  190. Wang X, Wu JC, Xu HY, Wang P, Tang BZ (2008) Preparation and property of two soluble oxadiazole-containing functional polyacetylenes. J Polym Sci Part A Polym Chem 46(6):2072–2083. doi:10.1002/pola.22542

    Article  CAS  Google Scholar 

  191. Qu J, Shiotsuki M, Sanda F, Masuda T (2007) Synthesis and properties of helical polyacetylenes carrying cholesteryl moieties. Macromol Chem Phys 208(8):823–832. doi:10.1002/macp.200600601

    Article  CAS  Google Scholar 

  192. Zhang XA, Chen MR, Zhao H, Gao Y, Wei Q, Zhang S, Qin AJ, Sun JZ, Tang BZ (2011) A facile synthetic route to functional poly(phenylacetylene)s with tunable structures and properties. Macromolecules 44(17):6724–6737. doi:10.1021/ma2014657

    Article  CAS  Google Scholar 

  193. Liu JZ, Lam JWY, Tang BZ (2009) Acetylenic polymers: syntheses, structures, and functions. Chem Rev 109(11):5799–5867. doi:10.1021/cr900149d

    Article  CAS  Google Scholar 

  194. Hu R, Leung NLC, Tang BZ (2014) AIE macromolecules: syntheses, structures and functionalities. Chem Soc Rev 43(13):4494–4562. doi:10.1039/c4cs00044g

    Article  CAS  Google Scholar 

  195. Masuda T (2007) Substituted polyacetylenes. J Polym Sci Part A Polym Chem 45(2):165–180. doi:10.1002/pola.21782

    Article  CAS  Google Scholar 

  196. Lam JWY, Dong YP, Kwok HS, Tang BZ (2006) Light-emitting polyacetylenes: synthesis and electrooptical properties of poly(1-phenyl-1-alkyne)s bearing naphthyl pendants. Macromolecules 39(20):6997–7003. doi:10.1021/ma0612576

    Article  CAS  Google Scholar 

  197. Hu RR, Lam JWY, Tang BZ (2013) Recent progress in the development of new acetylenic polymers. Macromol Chem Phys 214(2):175–187. doi:10.1002/macp.201200389

    Article  CAS  Google Scholar 

  198. Ou DX, Qin JG, Li Z (2012) A new disubstituted polyacetylene bearing DDTC moieties: postfunctional synthetic strategy, selective and sensitive chemosensor towards mercury ions. Polymer 53(25):5691–5698. doi:10.1016/j.polymer.2012.10.006

    Article  CAS  Google Scholar 

  199. Muroga T, Sakaguchi T, Hashimoto T (2012) Synthesis and photoluminescence properties of heterocycle-containing poly(disubstituted acetylene)s. Polymer 53(20):4380–4387. doi:10.1016/j.polymer.2012.08.009

    Article  CAS  Google Scholar 

  200. Sivkova R, Vohlidal J, Blaha M, Svoboda J, Sedlacek J, Zednik J (2012) Poly(disubstituted acetylene)s with pendant naphthalimide-based fluorophore groups. Macromol Chem Phys 213(4):411–424. doi:10.1002/macp.201100509

    Article  CAS  Google Scholar 

  201. Duchoslavova Z, Sivkova R, Hankova V, Sedlacek J, Svoboda J, Vohlidal J, Zednik J (2011) Synthesis and spectral properties of novel poly(disubstituted acetylene)s. Macromol Chem Phys 212(16):1802–1814. doi:10.1002/macp.201100160

    Article  CAS  Google Scholar 

  202. Park H, Jeong H, Lee WE, Yoon KB, Oh CJ, Kwak G (2011) Positive-/negative-, erasable-/immobilized-, mono-/multi-color fluorescence image patterning of molecular-scale porous polymer film via a microcontact printing method using various chemical inks. Macromol Rapid Commun 32(4):360–365. doi:10.1002/marc.201000623

    Article  CAS  Google Scholar 

  203. Zeng Q, Jim CKW, Lam JWY, Dong YQ, Li Z, Qin JU, Tang BZ (2009) A new disubstituted polyacetylene for the detection of alpha-amino acids. Macromol Rapid Commun 30(3):170–175. doi:10.1002/marc.200800616

    Article  CAS  Google Scholar 

  204. Lou XD, Zeng Q, Zhang Y, Wan ZM, Qin JG, Li Z (2012) Functionalized polyacetylenes with strong luminescence: “turn-on” fluorescent detection of cyanide based on the dissolution of gold nanoparticles and its application in real samples. J Mater Chem 22(12):5581–5586. doi:10.1039/c2jm15516h

    Article  CAS  Google Scholar 

  205. Lam JWY, Tang BZ (2003) Liquid-crystal line and light-emitting polyacetylenes. J Polym Sci Part A Polym Chem 41(17):2607–2629. doi:10.1002/pola.10802

    Article  CAS  Google Scholar 

  206. Bolinger JC, Traub MC, Brazard J, Adachi T, Barbara PF, Vanden Bout DA (2012) Conformation and energy transfer in single conjugated polymers. Acc Chem Res 45(11):1992–2001. doi:10.1021/ar300012k

    Article  CAS  Google Scholar 

  207. Lupton JM (2010) Single-molecule spectroscopy for plastic electronics: materials analysis from the bottom-up. Adv Mater 22(15):1689–1721. doi:10.1002/adma.200902306

    Article  CAS  Google Scholar 

  208. Pina J, de Melo JS, Burrows HD, Buennagel TW, Dolfen D, Kudla CJ, Scherf U (2009) Photophysical and spectroscopic investigations on (oligo)thiophene-arylene step-ladder copolymers. The interplay of conformational relaxation and on-chain energy transfer. J Phys Chem B 113(49):15928–15936. doi:10.1021/jp9054022

    Article  CAS  Google Scholar 

  209. Chen P-Y, Rassamesard A, Chen H-L, Chen S-A (2013) Conformation and fluorescence property of poly(3-hexylthiophene) isolated chains studied by single molecule spectroscopy: effects of solvent quality and regioregularity. Macromolecules 46(14):5657–5663. doi:10.1021/ma400852q

    Article  CAS  Google Scholar 

  210. Ambrose WP, Goodwin PM, Jett JH, Van Orden A, Werner JH, Keller RA (1999) Single molecule fluorescence spectroscopy at ambient temperature. Chem Rev 99(10):2929–2956. doi:10.1021/cr980132z

    Article  CAS  Google Scholar 

  211. Wang D, Yuan Y, Mardiyati Y, Bubeck C, Koynov K (2013) From single chains to aggregates, how conjugated polymers behave in dilute solutions. Macromolecules 46(15):6217–6224. doi:10.1021/ma4011523

    Article  CAS  Google Scholar 

  212. Watanabe K, Suda K, Akagi K (2013) Hierarchically self-assembled helical aromatic conjugated polymers. J Mater Chem C 1(16):2797–2805. doi:10.1039/c3tc00045a

    Article  CAS  Google Scholar 

  213. Huser T, Yan M, Rothberg LJ (2000) Single chain spectroscopy of conformational dependence of conjugated polymer photophysics. Proc Natl Acad Sci USA 97(21):11187–11191. doi:10.1073/pnas.97.21.11187

    Article  CAS  Google Scholar 

  214. Affleck RL, Ambrose WP, Demas JN, Goodwin PM, Schecker JA, Wu JM, Keller RA (1996) Reduction of luminescent background in ultrasensitive fluorescence detection by photobleaching. Anal Chem 68(13):2270–2276. doi:10.1021/ac9512517

    Article  CAS  Google Scholar 

  215. Li LQ, Davis LM (1995) Rapid and efficient detection of single chromophore molecules in aqueous-solution. Appl Opt 34(18):3208–3217

    Article  CAS  Google Scholar 

  216. Keller RA, Ambrose WP, Goodwin PM, Jett JH, Martin JC, Wu M (1996) Single molecule fluorescence analysis in solution. Appl Spectrosc 50(7):A12–A32

    Article  Google Scholar 

  217. Barnes MD, Ng KC, Whitten WB, Ramsey JM (1993) Detection of single rhodamine-6g molecules in levitated microdroplets. Anal Chem 65(17):2360–2365. doi:10.1021/ac00065a032

    Article  CAS  Google Scholar 

  218. Mahoney PP, Hieftje GM (1994) Fluorometric analysis on individual nanoliter sample droplets. Appl Spectrosc 48(8):956–958. doi:10.1366/0003702944029785

    Article  CAS  Google Scholar 

  219. Lee YH, Maus RG, Smith BW, Winefordner JD (1994) Laser-induced fluorescence detection of a single-molecule in a capillary. Anal Chem 66(23):4142–4149. doi:10.1021/ac00095a005

    Article  CAS  Google Scholar 

  220. Eigen M, Rigler R (1994) Sorting single molecules—application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci USA 91(13):5740–5747. doi:10.1073/pnas.91.13.5740

    Article  CAS  Google Scholar 

  221. Blatchford JW, Gustafson TL, Epstein AJ, VandenBout DA, Kerimo J, Higgins DA, Barbara PF, Fu DK, Swager TM, MacDiarmid AG (1996) Spatially and temporally resolved emission from aggregates in conjugated polymers. Phys Rev B 54(6):R3683–R3686

    Article  CAS  Google Scholar 

  222. Van den Bout DA, Yip WT, Hu DH, Fu DK, Swager TM, Barbara PF (1997) Discrete intensity jumps and intramolecular electronic energy transfer in the spectroscopy of single conjugated polymer molecules. Science 277(5329):1074–1077

    Article  Google Scholar 

  223. Stein AD, Fayer MD (1992) Spectral diffusion in liquids. J Chem Phys 97(5):2948–2962. doi:10.1063/1.463036

    Article  CAS  Google Scholar 

  224. Yip WT, Hu DH, Yu J, Vanden Bout DA, Barbara PF (1998) Classifying the photophysical dynamics of single- and multiple-chromophoric molecules by single molecule spectroscopy. J Phys Chem A 102(39):7564–7575. doi:10.1021/jp981808x

    Article  CAS  Google Scholar 

  225. Hu DH, Yu J, Barbara PF (1999) Single-molecule spectroscopy of the conjugated polymer MEH-PPV. J Am Chem Soc 121(29):6936–6937. doi:10.1021/ja990139d

    Article  CAS  Google Scholar 

  226. Barbara PF, Gesquiere AJ, Park SJ, Lee YJ (2005) Single-molecule spectroscopy of conjugated polymers. Acc Chem Res 38(7):602–610. doi:10.1021/ar040141w

    Article  CAS  Google Scholar 

  227. English DS, Harbron EJ, Barbara PF (2000) Probing photoinduced intersystem crossing by two-color, double resonance single molecule spectroscopy. J Phys Chem A 104(40):9057–9061. doi:10.1021/jp001992y

    Article  CAS  Google Scholar 

  228. Grey JK, Kim DY, Norris BC, Miller WL, Barbara PF (2006) Size-dependent spectroscopic properties of conjugated polymer nanoparticles. J Phys Chem B 110(51):25568–25572. doi:10.1021/jp065990a

    Article  CAS  Google Scholar 

  229. Yu ZH, Barbara PF (2004) Low-temperature single-molecule spectroscopy of MEH-PPV conjugated polymer molecules. J Phys Chem B 108(31):11321–11326. doi:10.1021/jp038005g

    Article  CAS  Google Scholar 

  230. Adachi T, Vogelsang J, Lupton JM (2014) Chromophore bending controls fluorescence lifetime in single conjugated polymer chains. J Phys Chem Lett 5(12):2165–2170. doi:10.1021/jz500810k

    Article  CAS  Google Scholar 

  231. Stangl T, Bange S, Schmitz D, Wuersch D, Hoeger S, Vogelsang J, Lupton JM (2013) Temporal switching of homo-FRET pathways in single-chromophore dimer models of pi-conjugated polymers. J Am Chem Soc 135(1):78–81. doi:10.1021/ja3108643

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Czech Science Foundation (Grants P106-12-0143). The authors would like to thank Lucie Suchá and Karel Šindelka for their help with graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Procházka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Procházka, K. (2016). Historical Perspective of Advances in Fluorescence Research on Polymer Systems. In: Procházka, K. (eds) Fluorescence Studies of Polymer Containing Systems. Springer Series on Fluorescence, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-26788-3_5

Download citation

Publish with us

Policies and ethics