Skip to main content

Conformational and Dynamic Behavior of Polymer and Polyelectrolyte Chains in Dilute Solutions

  • Chapter
  • First Online:
Fluorescence Studies of Polymer Containing Systems

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 16))

Abstract

This introductory chapter provides a brief (textbook-like) survey of important facts concerning the conformational and dynamic behavior of polymer chains in dilute solutions. The effect of polymer–solvent interactions on the behavior of polymer solutions is reviewed. The physical meanings of the terms good, ϑ-, and poor thermodynamic quality of the solvent are discussed in detail. Basic assumptions of the Kuhn model, which describes the conformational behavior of ideal flexible chains, are outlined first. Then, the correction terms due to finite bond angles and excluded volume of structural units are introduced, and their role is discussed. Special attention is paid to the conformational behavior of polyelectrolytes. The “pearl necklace” model, which predicts the cascade of conformational transitions of “quenched” polymer chains (i.e., of those with fixed position of charges on the chain) in solvents with deteriorating solvent quality, is described and discussed in detail. The incomplete (up-to-date) knowledge of the behavior of “annealed” (i.e., weak) polyelectrolytes and some characteristics of semiflexible chains are addressed at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rubinstein M, Colby R (2003) Polymers physics. Oxford University Press, Oxford

    Google Scholar 

  2. Sperling LH (2005) Introduction to physical polymer science. Wiley, Hoboken, NJ

    Book  Google Scholar 

  3. Munk P (1989) Introduction to macromolecular science. Wiley, New York

    Google Scholar 

  4. Doi M, See H (1996) Introduction to polymer physics. Clarendon, Oxford

    Google Scholar 

  5. Kawakatsu T (2004) Statistical physics of polymers: an introduction. Springer, Berlin

    Book  Google Scholar 

  6. Lodge TP, Muthukumar M (1996) Physical chemistry of polymers: entropy, interactions, and dynamics. J Phys Chem 100:13275–13292. doi:10.1021/Jp960244z

    Article  CAS  Google Scholar 

  7. Freire JJ (1999) Conformational properties of branched polymers: theory and simulations. Branched Polym II 143:35–112

    Article  CAS  Google Scholar 

  8. Huggins ML (1942) Theory of solutions of high polymers. J Am Chem Soc 64(7):1712–1719. doi:10.1021/ja01259a068

    Article  CAS  Google Scholar 

  9. Flory PJ (1949) The configuration of real polymer chains. J Chem Phys 17(3):303–310. doi:10.1063/1.1747243

    Article  CAS  Google Scholar 

  10. Flory PJ (1970) Thermodynamics of polymer solutions. Discuss Faraday Soc 49:7

    Article  Google Scholar 

  11. Flory PJ (1945) Thermodynamics of dilute solutions of high polymers. J Chem Phys 13(11):453–465. doi:10.1063/1.1723978

    Article  CAS  Google Scholar 

  12. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, NY

    Google Scholar 

  13. Flory PJ, Krigbaum WR (1951) Thermodynamics of high polymer solutions. Annu Rev Phys Chem 2:383–402. doi:10.1146/annurev.pc.02.100151.002123

    Article  CAS  Google Scholar 

  14. Flory PJ (1942) Thermodynamics of high polymer solutions. J Chem Phys 10(1):51–61

    Article  CAS  Google Scholar 

  15. Huggins ML (1942) Some properties of solutions of long-chain compounds. J Phys Chem 46(1):151–158. doi:10.1021/j150415a018

    Article  CAS  Google Scholar 

  16. Teraoka I (2002) Polymer solutions: an introduction to physical properties. Wiley, New York

    Book  Google Scholar 

  17. Yamakawa H (1971) Modern theory of polymer solutions. Harper & Row, New York

    Google Scholar 

  18. Brandrup J, Immergut EH, Grulke EA, Abe A, Bloch DR (1999) Polymer handbook, vol 89. Wiley, New York

    Google Scholar 

  19. Wanka G, Hoffmann H, Ulbricht W (1994) Phase-diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous-solutions. Macromolecules 27(15):4145–4159. doi:10.1021/ma00093a016

    Article  CAS  Google Scholar 

  20. Attwood D, Collett J, Tait C (1986) Photon correlation studies on the micelles of a poly (oxyethylene)-poly (oxypropylene)-poly (oxyethylene) block copolymer in aqueous solution. In: Surfactants in solution. Springer, pp 419–426

    Google Scholar 

  21. Kuhn W, Grun F (1942) Relationships between elastic constants and stretching double refraction of highly elastic substances. Kolloid-Z 101:248

    Article  CAS  Google Scholar 

  22. James HM, Guth E (1943) Theory of the elastic properties of rubber. J Chem Phys 11(10):455–481

    Article  CAS  Google Scholar 

  23. Rudnick J, Gaspari G (1987) The shapes of random-walks. Science 237(4813):384–389. doi:10.1126/science.237.4813.384

    Article  CAS  Google Scholar 

  24. Tanford C, Huggins ML (1962) Physical chemistry of macromolecules. J Electrochem Soc 109(3):98C

    Article  Google Scholar 

  25. De Gennes P-G (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca, NY

    Google Scholar 

  26. Binder K (1995) Monte Carlo and molecular dynamics simulations polymer. Oxford University Press, New York

    Google Scholar 

  27. Flory P, Volkenstein M (1969) Statistical mechanics of chain molecules. Wiley, New York

    Google Scholar 

  28. Volkenstein MV (1958) The configurational statistics of polymeric chains. J Polym Sci 29(120):441–454. doi:10.1002/pol.1958.1202912012

    Article  Google Scholar 

  29. Lifson S (1959) Neighbor interactions and internal rotations in polymer molecules. 3. Statistics of interdependent rotations and their application to the polyethylene molecule. J Chem Phys 30(4):964–967. doi:10.1063/1.1730136

    Article  CAS  Google Scholar 

  30. Nagai K, Ishikawa T (1965) Internal rotation and Kerr effect in polymer molecules. J Chem Phys 43(12):4508. doi:10.1063/1.1696725

    Article  CAS  Google Scholar 

  31. Kratky O, Porod G (1949) Rontgenuntersuchung geloster fadenmolekule. Recueil Des Travaux Chimiques Des Pays-Bas J R Neth Chem Soc 68(12):1106–1122

    Article  CAS  Google Scholar 

  32. Rouse PE (1953) A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys 21(7):1272–1280. doi:10.1063/1.1699180

    Article  CAS  Google Scholar 

  33. Zimm BH (1956) Dynamics of polymer molecules in dilute solution—viscoelasticity, flow birefringence and dielectric loss. J Chem Phys 24(2):269–278. doi:10.1063/1.1742462

    Article  CAS  Google Scholar 

  34. Krigbaum WR, Godwin RW (1965) Direct measurement of molecular dimensions in bulk polymers. J Chem Phys 43(12):4523. doi:10.1063/1.1696728

    Article  CAS  Google Scholar 

  35. Cotton JP, Farnoux B, Jannink G, Straziel C (1973) Dilute and semidilute solutions—light and neutron-scattering and osmotic-pressure. J Polym Sci Part C Polym Symp 42:981–985

    Article  Google Scholar 

  36. Kirste RG, Schelten J, Kruse WA (1972) Determination of radius of gyration of poly(methyl methacrylate) in glass state by neutron-diffraction. Makromol Chem 162:299

    Article  CAS  Google Scholar 

  37. Manning GS (1996) Counterion condensation theory constructed from different models. Physica A 231(1–3):236–253. doi:10.1016/0378-4371(95)00452-1

    Article  CAS  Google Scholar 

  38. Manning GS (1969) Limiting laws and counterion condensation in polyelectrolyte solutions. I. Colligative properties. J Chem Phys 51(3):924. doi:10.1063/1.1672157

    Article  CAS  Google Scholar 

  39. Manning GS (1969) Limiting laws and counterion condensation in polyelectrolyte solutions II. Self‐diffusion of the small ions. J Chem Phys 51(3):934–938

    Article  Google Scholar 

  40. Katchalsky A (1951) Solutions of polyelectrolytes and mechanochemical systems. J Polym Sci 7(4):393–412. doi:10.1002/pol.1951.120070403

    Article  CAS  Google Scholar 

  41. Crescenz V, Delben F, Quadrifo F (1972) Calorimetric investigation of poly(methacrylic acid) and poly(acrylic acid) in aqueous-solution. J Polym Sci Part A 10(2):357. doi:10.1002/pol.1972.160100215

    Article  Google Scholar 

  42. Delben F, Quadrifo F, Crescenz V (1972) Enthalpy of dissociation of poly(methacrylic acid) in aqueous-solution. Eur Polym J 8(7):933. doi:10.1016/0014-3057(72)90054-7

    Article  CAS  Google Scholar 

  43. Arnold R (1957) The titration of polymeric acids. J Colloid Sci 12(6):549–556. doi:10.1016/0095-8522(57)90060-0

    Article  CAS  Google Scholar 

  44. Strauss UP, Schlesinger MS (1978) Effects of alkyl group-size and counterion type on behavior of copolymers of maleic-anhydride and alkyl vinyl ethers. 2. Fluorescence of dansylated copolymers. J Phys Chem 82(14):1627–1632. doi:10.1021/j100503a011

    Article  CAS  Google Scholar 

  45. Strauss UP, Vesnaver G (1975) Optical probes in polyelectrolyte studies. 1. Acid–base equilibria of dansylated copolymers of maleic-anhydride and alkyl vinyl ethers. J Phys Chem 79(15):1558–1561. doi:10.1021/j100582a017

    Article  CAS  Google Scholar 

  46. Strauss UP, Vesnaver G (1975) Optical probes in polyelectrolyte studies. 2. Fluorescence-spectra of dansylated copolymers of maleic-anhydride and alkyl vinyl ethers. J Phys Chem 79(22):2426–2429. doi:10.1021/j100589a017

    Article  CAS  Google Scholar 

  47. Bednar B, Morawetz H, Shafer JA (1984) Kinetics of the cooperative complex-formation and dissociation of poly(acrylic acid) and poly(oxyethylene). Macromolecules 17(8):1634–1636. doi:10.1021/ma00138a037

    Article  CAS  Google Scholar 

  48. Bednar B, Morawetz H, Shafer JA (1985) Kinetics of the conformational transition of poly(methacrylic acid) after changes of its degree of ionization. Macromolecules 18(10):1940–1944. doi:10.1021/ma00152a024

    Article  CAS  Google Scholar 

  49. Wang YC, Morawetz H (1986) Study of the equilibrium and the kinetics of the fluorescence enhancement on mixing solutions of auramine-o and poly(methacrylic acid). Macromolecules 19(7):1925–1930. doi:10.1021/ma00161a024

    Article  CAS  Google Scholar 

  50. Horsky J, Morawetz H (1988) Kinetics of the conformational transition of poly(methacrylic acid) after a ph jump. 2. Studies of nonradiative energy-transfer. Makromol Chem 189(10):2475–2483

    Article  CAS  Google Scholar 

  51. Ghiggino K, Tan K, Phillips D (1985) Polymer photophysics. Chapman and Hall, London

    Google Scholar 

  52. Dobrynin AV, Rubinstein M, Obukhov SP (1996) Cascade of transitions of polyelectrolytes in poor solvents. Macromolecules 29(8):2974–2979. doi:10.1021/ma9507958

    Article  CAS  Google Scholar 

  53. Kuhn W, Kunzle O, Katchalsky A (1948) Verhalten polyvalenter fadenmolekelionen in losung. Helv Chim Acta 31(7):1994–2037. doi:10.1002/hlca.19480310716

    Article  CAS  Google Scholar 

  54. Debye P, Huckel E (1923) The interionic attraction theory of deviations from ideal behavior in solution. Z Phys 24:185

    CAS  Google Scholar 

  55. Dormidontova EE, Erukhimovich IY, Khokhlov AR (1994) Microphase separation in poor-solvent polyelectrolyte solutions—phase-diagram. Macromol Theory Simul 3(4):661–675. doi:10.1002/mats.1994.040030403

    Article  CAS  Google Scholar 

  56. Vasilevskaya VV, Khokhlov AR (1992) Swelling and collapse of polymer gel in polymer-solutions and melts. Macromolecules 25(1):384–390. doi:10.1021/ma00027a059

    Article  CAS  Google Scholar 

  57. Kantor Y, Kardar M (1994) Excess charge in polyampholytes. Europhys Lett 27(9):643–648. doi:10.1209/0295-5075/27/9/002

    Article  CAS  Google Scholar 

  58. Rayleigh L (1882) On the equilibrium of liquid conducting masses charged with electricity. Philos Mag Ser 5 14(87):184–186. doi:10.1080/14786448208628425

    Article  Google Scholar 

  59. Lyulin AV, Dunweg B, Borisov OV, Darinskii AA (1999) Computer simulation studies of a single polyelectrolyte chain in poor solvent. Macromolecules 32(10):3264–3278. doi:10.1021/ma981818w

    Article  CAS  Google Scholar 

  60. Liao Q, Dobrynin AV, Rubinstein M (2003) Molecular dynamics simulations of polyelectrolyte solutions: nonuniform stretching of chains and scaling behavior. Macromolecules 36(9):3386–3398. doi:10.1021/ma025995f

    Article  CAS  Google Scholar 

  61. Liao Q, Dobrynin AV, Rubinstein M (2006) Counterion-correlation-induced attraction and necklace formation in polyelectrolyte solutions: theory and simulations. Macromolecules 39(5):1920–1938. doi:10.1021/ma052086s

    Article  CAS  Google Scholar 

  62. Liu B, Dunweg B (2003) Translational diffusion of polymer chains with excluded volume and hydrodynamic interactions by Brownian dynamics simulation. J Chem Phys 118(17):8061–8072. doi:10.1063/1.1564047

    Article  CAS  Google Scholar 

  63. Ulrich S, Laguecir A, Stoll S (2005) Titration of hydrophobic polyelectrolytes using Monte Carlo simulations. J Chem Phys 122(9), 094911. doi:10.1063/1.1856923

    Article  CAS  Google Scholar 

  64. Chodanowski P, Stoll S (1999) Monte Carlo simulations of hydrophobic polyelectrolytes: evidence of complex configurational transitions. J Chem Phys 111(13):6069–6081. doi:10.1063/1.479905

    Article  CAS  Google Scholar 

  65. Uhlik F, Kosovan P, Limpouchova Z, Prochazka K, Borisov OV, Leermakers FAM (2014) Modeling of ionization and conformations of starlike weak polyelectrolytes. Macromolecules 47(12):4004–4016. doi:10.1021/ma500377y

    Article  CAS  Google Scholar 

  66. Ou ZY, Muthukumar M (2005) Langevin dynamics of semiflexible polyelectrolytes: rod-toroid-globule-coil structures and counterion distribution. J Chem Phys 123(7):074905. doi:10.1063/1.1940054

    Google Scholar 

  67. Yamaguchi T, Kiuchi T, Matsuoka T, Koda S (2005) Multi-pH Monte Carlo simulation of coil-globule transition of weak polyelectrolyte. Bull Chem Soc Jpn 78(12):2098–2104. doi:10.1246/bcsj.78.2098

    Article  CAS  Google Scholar 

  68. Uyaver S, Seidel C (2004) Pearl-necklace structures in annealed polyelectrolytes. J Phys Chem B 108(49):18804–18814. doi:10.1021/jp0464270

    Article  CAS  Google Scholar 

  69. Uyaver S, Seidel C (2009) Effect of varying salt concentration on the behavior of weak polyelectrolytes in a poor solvent. Macromolecules 42(4):1352–1361. doi:10.1021/ma801817j

    Article  CAS  Google Scholar 

  70. Micka U, Holm C, Kremer K (1999) Strongly charged, flexible polyelectrolytes in poor solvents: molecular dynamics simulations. Langmuir 15(12):4033–4044. doi:10.1021/la981191a

    Article  CAS  Google Scholar 

  71. Limbach HJ, Holm C (2003) Single-chain properties of polyelectrolytes in poor solvent. J Phys Chem B 107(32):8041–8055. doi:10.1021/jp027606p

    Article  CAS  Google Scholar 

  72. Limbach HJ, Holm C (2001) End effects of strongly charged polyelectrolytes: a molecular dynamics study. J Chem Phys 114(21):9674–9682. doi:10.1063/1.1370077

    Article  CAS  Google Scholar 

  73. Limbach HJ, Holm C, Kremer K (2002) Structure of polyelectrolytes in poor solvent. Europhys Lett 60(4):566–572. doi:10.1209/epl/i2002-00256-8

    Article  CAS  Google Scholar 

  74. Kosovan P, Kuldova J, Limpouchova Z, Prochazka K, Zhulina EB, Borisov OV (2010) Molecular dynamics simulations of a polyelectrolyte star in poor solvent. Soft Matter 6(9):1872–1874. doi:10.1039/b925067k

    Article  CAS  Google Scholar 

  75. Kosovan P, Kuldova J, Limpouchova Z, Prochazka K, Zhulina EB, Borisov OV (2009) Amphiphilic graft copolymers in selective solvents: molecular dynamics simulations and scaling theory. Macromolecules 42(17):6748–6760. doi:10.1021/ma900768p

    Article  CAS  Google Scholar 

  76. Kosovan P, Limpouchova Z, Prochazka K (2007) Conformational behavior of comb-like polyelectrolytes in selective solvent: computer simulation study. J Phys Chem B 111(29):8605–8611. doi:10.1021/jp072894g

    Article  CAS  Google Scholar 

  77. Raphael E, Joanny JF (1990) Annealed and quenched polyelectrolytes. Europhys Lett 13(7):623–628. doi:10.1209/0295-5075/13/7/009

    Article  CAS  Google Scholar 

  78. Binder K, Paul W (2008) Recent developments in Monte Carlo simulations of lattice models for polymer systems. Macromolecules 41(13):4537–4550. doi:10.1021/ma702843z

    Article  CAS  Google Scholar 

  79. Binder K, Muller M, Virnau P, MacDowell LG (2005) Polymer plus solvent systems: phase diagrams, interface free energies, and nucleation. In: Holm C, Kremer K (eds) Advanced computer simulation approaches for soft matter sciences I, vol 173, Advances in Polymer Science. Springer, Berlin, pp 1–104. doi:10.1007/b99426

    Google Scholar 

  80. Baschnagel J, Binder K, Doruker P, Gusev AA, Hahn O, Kremer K, Mattice WL, Muller-Plathe F, Murat M, Paul W, Santos S, Suter UW, Tries V (2000) Bridging the gap between atomistic and coarse-grained models of polymers: status and perspectives. Adv Polym Sci 152:41–156

    Article  CAS  Google Scholar 

  81. Honeycutt JD (1998) A general simulation method for computing conformational properties of single polymer chains. Comput Theor Polym Sci 8(1–2):1–8. doi:10.1016/s1089-3156(97)00025-1

    Article  CAS  Google Scholar 

  82. Ahlrichs P, Dunweg B (1999) Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics. J Chem Phys 111(17):8225–8239. doi:10.1063/1.480156

    Article  CAS  Google Scholar 

  83. Havrankova J, Limpouchova Z, Prochazka K (2003) Monte Carlo study of heteroarm star copolymers in good and selective solvents. Macromol Theory Simul 12(7):512–523. doi:10.1002/mats.200350012

    Article  CAS  Google Scholar 

  84. Viduna D, Limpouchova Z, Prochazka K (2001) Monte Carlo simulation of polymer brushes in narrow pores. J Chem Phys 115(15):7309–7318. doi:10.1063/1.1405444

    Article  CAS  Google Scholar 

  85. Zhou Z, Daivis PJ (2009) Molecular dynamics study of polymer conformation as a function of concentration and solvent quality. J Chem Phys 130(22), 224904. doi:10.1063/1.3149858

    Article  CAS  Google Scholar 

  86. Jusufi A, Likos CN (2009) Colloquium: star-branched polyelectrolytes: the physics of their conformations and interactions. Rev Mod Phys 81(4):1753–1772. doi:10.1103/RevModPhys.81.1753

    Article  Google Scholar 

  87. Jusufi A, Likos CN, Lowen H (2002) Counterion-induced entropic interactions in solutions of strongly stretched, osmotic polyelectrolyte stars. J Chem Phys 116(24):11011–11027. doi:10.1063/1.1480007

    Article  CAS  Google Scholar 

  88. Polson JM, Opps SB, Abou Risk N (2009) Theoretical study of solvent effects on the coil-globule transition. J Chem Phys 130(24), 244902. doi:10.1063/1.3153350

    Article  CAS  Google Scholar 

  89. Rissanou AN, Anastasiadis SH, Bitsanis IA (2009) A Monte Carlo study of the coil-to-globule transition of model polymer chains near an attractive surface. J Polym Sci Part B Polym Phys 47(24):2462–2476. doi:10.1002/polb.21869

    Article  CAS  Google Scholar 

  90. Limbach HJ, Holm C, Kremer K (2004) Conformations and solution structure of polyelectrolytes in poor solvent. Macromol Symp 211:43–53. doi:10.1002/masy.200450703

    Article  CAS  Google Scholar 

  91. Ulrich S, Laguecir A, Stoll S (2004) Complex formation between a nanoparticle and a weak polyelectrolyte chain: Monte Carlo simulations. J Nanoparticle Res 6(6):595–603. doi:10.1007/s11051-004-3548-4

    Article  CAS  Google Scholar 

  92. Nair AKN, Uyaver S, Sun SY (2014) Conformational transitions of a weak polyampholyte. J Chem Phys 141(13):11. doi:10.1063/1.4897161

    Google Scholar 

  93. Kosovan P, Limpouchova Z, Prochazka K (2008) Charge distribution and conformations of weak polyelectrolyte chains in poor solvents. Collect Czechoslov Chem Commun 73(4):439–458. doi:10.1135/cccc20080439

    Article  CAS  Google Scholar 

  94. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon, Oxford

    Google Scholar 

  95. Odijk T (1977) Polyelectrolytes near the rod limit. J Polym Sci Part B Polym Phys 15(3):477–483. doi:10.1002/pol.1977.180150307

    Article  CAS  Google Scholar 

  96. Skolnick J, Fixman M (1977) Electrostatic persistence length of a wormlike polyelectrolyte. Macromolecules 10(5):944–948. doi:10.1021/ma60059a011

    Article  CAS  Google Scholar 

  97. Khokhlov AR, Khachaturian KA (1982) On the theory of weakly charged poly-electrolytes. Polymer 23(12):1742–1750. doi:10.1016/0032-3861(82)90116-1

    Article  CAS  Google Scholar 

  98. Everaers R, Milchev A, Yamakov V (2002) The electrostatic persistence length of polymers beyond the OSF limit. Eur Phys J E 8(1):3–14. doi:10.1140/epje/i2002-10007-3

    Article  CAS  Google Scholar 

  99. Nguyen TT, Shklovskii BI (2002) Persistence length of a polyelectrolyte in salty water: Monte Carlo study. Phys Rev E 66(2), 021801. doi:10.1103/PhysRevE.66.021801

    Article  CAS  Google Scholar 

  100. Ullner M (2003) Comments on the scaling behavior of flexible polyelectrolytes within the Debye-Huckel approximation. J Phys Chem B 107(32):8097–8110. doi:10.1021/jp027381i

    Article  CAS  Google Scholar 

  101. Barrat JL, Joanny JF (1993) Persistence length of polyelectrolyte chains. Europhys Lett 24(5):333–338. doi:10.1209/0295-5075/24/5/003

    Article  CAS  Google Scholar 

  102. Micka U, Kremer K (1997) Persistence length of weakly charged polyelectrolytes with variable intrinsic stiffness. Europhys Lett 38(4):279–284. doi:10.1209/epl/i1997-00238-x

    Article  CAS  Google Scholar 

  103. Gubarev A, Carrillo J-MY, Dobrynin AV (2009) Scale-dependent electrostatic stiffening in biopolymers. Macromolecules 42(15):5851–5860. doi:10.1021/ma9008143

    Article  CAS  Google Scholar 

  104. Manghi M, Netz RR (2004) Variational theory for a single polyelectrolyte chain revisited. Eur Phys J E 14(1):67–77. doi:10.1140/epje/i2004-10007-3

    Article  CAS  Google Scholar 

  105. Bacova P, Kosovan P, Uhlik F, Kuldova J, Limpouchova Z, Prochazka K (2012) Double-exponential decay of orientational correlations in semiflexible polyelectrolytes. Eur Phys J E 35(6):53. doi:10.1140/epje/i2012-12053-6

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Czech Science Foundation (Grants P106-12-0143 and P106-15-19542S). The authors would like to thank Lucie Suchá and Karel Šindelka for their help with graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Procházka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Procházka, K. (2016). Conformational and Dynamic Behavior of Polymer and Polyelectrolyte Chains in Dilute Solutions. In: Procházka, K. (eds) Fluorescence Studies of Polymer Containing Systems. Springer Series on Fluorescence, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-26788-3_1

Download citation

Publish with us

Policies and ethics