Abstract
We present a new algorithm for estimating the Personalized PageRank (PPR) between a source and target node on undirected graphs, with sublinear running-time guarantees over the worst-case choice of source and target nodes. Our work builds on a recent line of work on bidirectional estimators for PPR, which obtained sublinear running-time guarantees but in an average-case sense, for a uniformly random choice of target node. Crucially, we show how the reversibility of random walks on undirected networks can be exploited to convert average-case to worst-case guarantees. While past bidirectional methods combine forward random walks with reverse local pushes, our algorithm combines forward local pushes with reverse random walks. We also discuss how to modify our methods to estimate random-walk probabilities for any length distribution, thereby obtaining fast algorithms for estimating general graph diffusions, including the heat kernel, on undirected networks.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
Specifically, for each node u in the original graph, SALSA creates two virtual nodes, a “consumer-node” \(u'\) and a “producer-node” \(u''\), which are linked by an undirected edge. Any directed edge (u, v) is then converted into an undirected edge \((u', v'')\) from u’s consumer node to v’s producer node.
- 2.
Following convention, we use w.h.p. to mean with probability greater than \(1-\frac{1}{n}\).
References
Andersen, R., Borgs, C., Chayes, J., Hopcraft, J., Mirrokni, V.S., Teng, S.-H.: Local computation of pagerank contributions. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp. 150–165. Springer, Heidelberg (2007)
Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vectors. In: 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006 (2006)
Avrachenkov, K., Gonçalves, P., Sokol, M.: On the choice of kernel and labelled data in semi-supervised learning methods. In: Bonato, A., Mitzenmacher, M., Prałat, P. (eds.) WAW 2013. LNCS, vol. 8305, pp. 56–67. Springer, Heidelberg (2013)
Avrachenkov, K., Litvak, N., Nemirovsky, D., Osipova, N.: Monte carlo methods in pagerank computation: when one iteration is sufficient. SIAM J. Numer. Anal. 45, 890–904 (2007)
Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. ACM (2011)
Bahmani, B., Chowdhury, A., Goel, A.: Fast incremental and personalized pagerank. Proc. VLDB Endowment 4(3), 173–184 (2010)
Baluja, S., Seth, R., Sivakumar, D., Jing, Y., Yagnik, J., Kumar, S., Ravichandran, D., Aly, M.: Video suggestion and discovery for youtube: taking random walks through the view graph. In: Proceedings of the 17th International Conference on World Wide Web. ACM (2008)
Banerjee, S., Lofgren, P.: Fast bidirectional probability estimation in markov models. In: NIPS (2015)
Borgs, C., Brautbar, M., Chayes, J., Teng, S.-H.: A sublinear time algorithm for pagerank computations. In: Bonato, A., Janssen, J. (eds.) WAW 2012. LNCS, vol. 7323, pp. 41–53. Springer, Heidelberg (2012)
Bressan, M., Peserico, E., Pretto, L.: Approximating pagerank locally with sublinear query complexity. arXiv preprint arXiv:1404.1864 (2014)
Chung, F.: The heat kernel as the pagerank of a graph. Proc. Nat. Acad. Sci. 104, 19735–19740 (2007)
Dubhashi, D., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, New York (2009)
Gleich, D.F.: PageRank beyond the web. arXiv, cs.SI:1407.5107 (2014). Accepted for publication in SIAM Review
Goldreich, O., Ron, D.: On testing expansion in bounded-degree graphs. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. LNCS, vol. 6650, pp. 68–75. Springer, Heidelberg (2011)
Grolmusz, V.: A note on the pagerank of undirected graphs. Inf. Process. Lett. 115, 633–634 (2015)
Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D., Zadeh, R.: Wtf: the who to follow service at twitter. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 505–514. International World Wide Web Conferences Steering Committee (2013)
Kale, S., Peres, Y., Seshadhri, C.: Noise tolerance of expanders and sublinear expander reconstruction. In: Proceedings of the IEEE FOCS 2008. IEEE (2008)
Kloster, K., Gleich, D.F.: Heat kernel based community detection. In: Proceedings of the ACM SIGKDD 2014 (2014)
Lempel, R., Moran, S.: The stochastic approach for link-structure analysis (salsa) and the tkc effect. Comput. Netw. 33(1), 387–401 (2000)
Lofgren, P., Banerjee, S., Goel, A.: Personalized pagerank estimation and search: A bidirectional approach. Technical report (2015)
Lofgren, P., Goel, A.: Personalized pagerank to a target node. arXiv preprint arXiv:1304.4658 (2013)
Lofgren, P.A., Banerjee, S., Goel, A., Seshadhri, C.: FAST-PPR: scaling personalized pagerank estimation for large graphs. In: Proceedings of the ACM SIGKDD 2014. ACM (2014)
Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web (1999)
Acknowledgments
Research supported by the DARPA GRAPHS program via grant FA9550-12-1-0411, and by NSF grant 1447697. One author was supported by an NPSC fellowship. Thanks to Aaron Sidford for a helpful discussion.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Lofgren, P., Banerjee, S., Goel, A. (2015). Bidirectional PageRank Estimation: From Average-Case to Worst-Case. In: Gleich, D., Komjáthy, J., Litvak, N. (eds) Algorithms and Models for the Web Graph. WAW 2015. Lecture Notes in Computer Science(), vol 9479. Springer, Cham. https://doi.org/10.1007/978-3-319-26784-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-26784-5_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26783-8
Online ISBN: 978-3-319-26784-5
eBook Packages: Computer ScienceComputer Science (R0)