Skip to main content

Bidirectional PageRank Estimation: From Average-Case to Worst-Case

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9479)

Abstract

We present a new algorithm for estimating the Personalized PageRank (PPR) between a source and target node on undirected graphs, with sublinear running-time guarantees over the worst-case choice of source and target nodes. Our work builds on a recent line of work on bidirectional estimators for PPR, which obtained sublinear running-time guarantees but in an average-case sense, for a uniformly random choice of target node. Crucially, we show how the reversibility of random walks on undirected networks can be exploited to convert average-case to worst-case guarantees. While past bidirectional methods combine forward random walks with reverse local pushes, our algorithm combines forward local pushes with reverse random walks. We also discuss how to modify our methods to estimate random-walk probabilities for any length distribution, thereby obtaining fast algorithms for estimating general graph diffusions, including the heat kernel, on undirected networks.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Specifically, for each node u in the original graph, SALSA creates two virtual nodes, a “consumer-node” \(u'\) and a “producer-node” \(u''\), which are linked by an undirected edge. Any directed edge (uv) is then converted into an undirected edge \((u', v'')\) from u’s consumer node to v’s producer node.

  2. 2.

    Following convention, we use w.h.p. to mean with probability greater than \(1-\frac{1}{n}\).

References

  1. Andersen, R., Borgs, C., Chayes, J., Hopcraft, J., Mirrokni, V.S., Teng, S.-H.: Local computation of pagerank contributions. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp. 150–165. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  2. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vectors. In: 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006 (2006)

    Google Scholar 

  3. Avrachenkov, K., Gonçalves, P., Sokol, M.: On the choice of kernel and labelled data in semi-supervised learning methods. In: Bonato, A., Mitzenmacher, M., Prałat, P. (eds.) WAW 2013. LNCS, vol. 8305, pp. 56–67. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  4. Avrachenkov, K., Litvak, N., Nemirovsky, D., Osipova, N.: Monte carlo methods in pagerank computation: when one iteration is sufficient. SIAM J. Numer. Anal. 45, 890–904 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  5. Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. ACM (2011)

    Google Scholar 

  6. Bahmani, B., Chowdhury, A., Goel, A.: Fast incremental and personalized pagerank. Proc. VLDB Endowment 4(3), 173–184 (2010)

    CrossRef  Google Scholar 

  7. Baluja, S., Seth, R., Sivakumar, D., Jing, Y., Yagnik, J., Kumar, S., Ravichandran, D., Aly, M.: Video suggestion and discovery for youtube: taking random walks through the view graph. In: Proceedings of the 17th International Conference on World Wide Web. ACM (2008)

    Google Scholar 

  8. Banerjee, S., Lofgren, P.: Fast bidirectional probability estimation in markov models. In: NIPS (2015)

    Google Scholar 

  9. Borgs, C., Brautbar, M., Chayes, J., Teng, S.-H.: A sublinear time algorithm for pagerank computations. In: Bonato, A., Janssen, J. (eds.) WAW 2012. LNCS, vol. 7323, pp. 41–53. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  10. Bressan, M., Peserico, E., Pretto, L.: Approximating pagerank locally with sublinear query complexity. arXiv preprint arXiv:1404.1864 (2014)

  11. Chung, F.: The heat kernel as the pagerank of a graph. Proc. Nat. Acad. Sci. 104, 19735–19740 (2007)

    CrossRef  Google Scholar 

  12. Dubhashi, D., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, New York (2009)

    CrossRef  MATH  Google Scholar 

  13. Gleich, D.F.: PageRank beyond the web. arXiv, cs.SI:1407.5107 (2014). Accepted for publication in SIAM Review

    Google Scholar 

  14. Goldreich, O., Ron, D.: On testing expansion in bounded-degree graphs. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. LNCS, vol. 6650, pp. 68–75. Springer, Heidelberg (2011)

    Google Scholar 

  15. Grolmusz, V.: A note on the pagerank of undirected graphs. Inf. Process. Lett. 115, 633–634 (2015)

    CrossRef  MathSciNet  Google Scholar 

  16. Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D., Zadeh, R.: Wtf: the who to follow service at twitter. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 505–514. International World Wide Web Conferences Steering Committee (2013)

    Google Scholar 

  17. Kale, S., Peres, Y., Seshadhri, C.: Noise tolerance of expanders and sublinear expander reconstruction. In: Proceedings of the IEEE FOCS 2008. IEEE (2008)

    Google Scholar 

  18. Kloster, K., Gleich, D.F.: Heat kernel based community detection. In: Proceedings of the ACM SIGKDD 2014 (2014)

    Google Scholar 

  19. Lempel, R., Moran, S.: The stochastic approach for link-structure analysis (salsa) and the tkc effect. Comput. Netw. 33(1), 387–401 (2000)

    CrossRef  Google Scholar 

  20. Lofgren, P., Banerjee, S., Goel, A.: Personalized pagerank estimation and search: A bidirectional approach. Technical report (2015)

    Google Scholar 

  21. Lofgren, P., Goel, A.: Personalized pagerank to a target node. arXiv preprint arXiv:1304.4658 (2013)

  22. Lofgren, P.A., Banerjee, S., Goel, A., Seshadhri, C.: FAST-PPR: scaling personalized pagerank estimation for large graphs. In: Proceedings of the ACM SIGKDD 2014. ACM (2014)

    Google Scholar 

  23. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web (1999)

    Google Scholar 

Download references

Acknowledgments

Research supported by the DARPA GRAPHS program via grant FA9550-12-1-0411, and by NSF grant 1447697. One author was supported by an NPSC fellowship. Thanks to Aaron Sidford for a helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lofgren, P., Banerjee, S., Goel, A. (2015). Bidirectional PageRank Estimation: From Average-Case to Worst-Case. In: Gleich, D., Komjáthy, J., Litvak, N. (eds) Algorithms and Models for the Web Graph. WAW 2015. Lecture Notes in Computer Science(), vol 9479. Springer, Cham. https://doi.org/10.1007/978-3-319-26784-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26784-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26783-8

  • Online ISBN: 978-3-319-26784-5

  • eBook Packages: Computer ScienceComputer Science (R0)