Skip to main content

Cocoa in Monoculture and Dynamic Agroforestry

Part of the Sustainable Agriculture Reviews book series (SARV,volume 19)

Abstract

The growing demand for cocoa beans and products worldwide has been met by expanding the area under cocoa production while productivity per hectare has stagnated at a low level of around 450 kg/ha per year in the last decade. Throughout the tropics cocoa has increasingly been cultivated in full-sun monocultures in order to maximize short-term productivity and profitability, which has been associated with soil erosion and degradation, biodiversity loss, as well as increased susceptibility to climate change impacts and pests and diseases. Dynamic agroforestry systems are an alternative production method which has long been practiced in Latin American countries such as Bolivia. Through mimicking natural forests, these systems offer multiple benefits such as soil fertility enhancement, reduction in pest and disease pressure, erosion control, and revenue diversification. In Côte d’Ivoire, where most cocoa is still produced in monocultures, dynamic agroforestry systems were recently introduced on a small scale.

Here we use different research projects conducted in Bolivia and Côte d’Ivoire as case studies to review productivity, soil fertility as well as pests and diseases in dynamic agroforestry systems and monocultures, and outline factors influencing the adoption of dynamic agroforestry systems from the farmers’ perspective. We found productivity under agroforestry systems to be either similar or higher compared to monocultures. We recorded 161 % higher total system yields in an on-station field trial and an on-farm study in Bolivia, and in an on-farm study in Côte d’Ivoire. Cocoa yields were 12–46 % higher in agroforestry systems compared to monocultures. In addition, cocoa in dynamic agroforestry systems exhibited significantly less incidences of witches’ broom, Moniliophthora perniciosa, compared to monocultures in Bolivia.

Farmers in Bolivia and Côte d’Ivoire observed more soil-related problems and incidences of pests and diseases in monocultures than in agroforestry systems, and they showed high interest to learn dynamic agroforestry management practices. However, adoption was strongly limited to project areas where dynamic agroforestry plots had been installed with farmers’ participation. This highlights the importance of local organizations such as Ecotop, Ecosaf, El Ceibo and Biopartenaire Ltd., who implement such interventions on the ground. However, we found that there is space for improvement in the way organizations interact with farmers, especially in Côte d’Ivoire. Interactive knowledge sharing methods such as farmer field schools may help to stimulate farmers’ protagonism and give scientists and external consultants the role of facilitators who integrate different forms of knowledge and make them visible to different stakeholders. Such a social learning process requires transdisciplinary research for the development of decision support tools which facilitate the determination of both optimal planting densities and shade levels, as well as adequate combinations of trees and accompanying species in order to achieve effective regulation of pests and diseases while ensuring favourable growing conditions.

Keywords

  • Cocoa
  • Bolivia
  • Côte d’Ivoire
  • Dynamic agroforestry systems
  • Pests and diseases
  • Resilience
  • Participatory on-farm research
  • Transdisciplinary research

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-26777-7_3
  • Chapter length: 33 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-26777-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2

References

  • Altieri M (2004) Linkingecologists and traditional farmers in the search for sustainable agriculture. Front Ecol Environ 2:35–42

    CrossRef  Google Scholar 

  • Altieri M, Nicholls C (2013) The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim Change, 1–13. doi:10.1007/s10584-013-0909-y

    Google Scholar 

  • Analog Forestry Network (RIFA) (2012) Field guide to analog forestry - A basic overview. Available: http://www.analogforestry.org/resources/publications/. Accessed 29 November 2015

  • Aneani F, Anchirinah VM, Owusu-Ansah F, Asamoah M (2011) An analysis of the extent and determinants of crop diversification by cocoa (Theobroma cacao) farmers in Ghana. Af J Agric Res 6:4277–4287

    Google Scholar 

  • Anim-Kwapong GJ, Frimpong EB (2006) Vulnerability of agriculture to climate change- impact of climate change on cocoa production. In: 2, R. O. V. A. A. A. U. T. N. C. C. S. A. P. P. (ed) Cocoa Research Institute of Ghana, Tafo

    Google Scholar 

  • Asare R (2005) Cocoa agroforests in West Africa: a look at activitues on preferred trees in the farming systems. Forest & Landscape working papers, 6–2005.Forest & Landscape Denmark, Horsholm, pp 1–77

    Google Scholar 

  • Asare R (2006) A review on cocoa agroforestry as a means for biodiversity conservation. In: Centre for Forest, L. A. P. D (eds) World Cocoa Foundation partnership conference, Brussels

    Google Scholar 

  • Asare R, Afari-Sefa V, Osei-Owusu Y, Pabi O (2014) Cocoa agroforestry for increasing forest connectivity in a fragmented landscape in Ghana. Agrofor Syst 88:1143–1156

    CrossRef  Google Scholar 

  • Assiri AA, René YG, Olivier D, Ismaël B, Jules KZ, Amoncho A (2009) The agronomic characteristics of the cacao (Theobroma cocoa L.) orchards in Cote d’Ivoire. J Anim Plant Sci (JAPS) 2:55–66

    Google Scholar 

  • Bazoberry CO, Salazar CC (2008) El Cacao en Bolivia – Una alternativa económica de base campesina indígena. Centro de Investigación y Promoción del Campesinado (CIPCA), La Paz

    Google Scholar 

  • Bedimo JAM, Dufour BP, Cilas C, Avelino J (2012) Effects of shade trees on Coffea arabica pests and diseases. Cahiers Agric 21:89–97

    Google Scholar 

  • Beer J (1987) Advantages, disadvantages and desirable characteristics of shade trees for coffee, cacao and tea. Agrofor Syst 5:3–13

    CrossRef  Google Scholar 

  • Beer J, Muschler R, Kass D, Somarriba E (1998) Shade management in coffee and cacao plantations. Agrofor Syst 38:139–164

    CrossRef  Google Scholar 

  • Beerli A (2014) Short-term economic and non-economic aspects for adopting dynamic agroforestry in cocoa production in Côte d’Ivoire. Master thesis, Department of Agricultural Economics, Swiss Federal Institute of Technolgy (ETH) Zurich, p 77

    Google Scholar 

  • Bellow JG, Nair PKR, Martin TA (2008) Tree-crop interactions in fruit tree-based agroforestry systems in the western highlands of Guatemala: component yields and system performance. Springer, Dordrecht

    Google Scholar 

  • Belsky JM, Siebert SF (2003) Cultivating cacao: implications of sun-grown cacao on local food security and environmental sustainability. Agric Hum Values 20:277–285

    CrossRef  Google Scholar 

  • Bentley JW, Boa E, Stonehouse J (2004) Neighbor trees: shade, intercropping, and cacao in Ecuador. Hum Ecol 32:241–270

    CrossRef  Google Scholar 

  • Bieng MAN, Gidoin C, Avelino J, Cilas C, Deheuvels O, Wery J (2013) Diversity and spatial clustering of shade trees affect cacao yield and pathogen pressure in Costa Rican agroforests. Basic Appl Ecol 14:329–336

    CrossRef  Google Scholar 

  • Bisseleua HBD, Fotio D, Yede D, Missoup AD, Vidal S (2013) Shade tree diversity, cocoa pest damage, yield compensating inputs and farmers’ net returns in West Africa. Plos One 8:e56115

    CrossRef  CAS  PubMed  Google Scholar 

  • Bos MM, Steffan-Dewenter I, Tscharntke T (2007) Shade tree management affects fruit abortion, insect pests and pathogens of cacao. Agr Ecosyst Environ 120:201–205

    CrossRef  Google Scholar 

  • Buresh RJ, Rowe EC, Livesley SJ, Cadisch G, Mafongoya P (2004) Opportunities for capture of deep soil nutrients. In: van Noordwijk M, Cadisch G, Ong CK (eds) Below-ground interactions in tropical agro-ecosystems: concepts and models with multiple plant components. CABI Publishing, Wallingford, pp 109–123

    CrossRef  Google Scholar 

  • Campbell CAM (1984) The influence of overhead shade and fertilizers on the homoptera of mature upper-amazon cocoa trees in Ghana. Bull Entomol Res 74:163–174

    CrossRef  Google Scholar 

  • CCC (2015) Vers La Durabilité Du Secteur Du Cacao En Côte D’Ivoire - Quelles Pourraient Etre Les Contributions De Gisco. Le Conseil du café-cacao, Available via dialogue. http://www.kakaoforum.de/fileadmin/user_uploads/Vers_la_durabilit%C3%A9_du_secteur_du_cacao.pdf. Accessed 8 June 2015

  • Cerda R, Deheuvels O, Calvache D, Niehaus L, Saenz Y, Kent J, Vilchez S, Villota A, Martinez C, Somarriba E (2014) Contribution of cocoa agroforestry systems to family income and domestic consumption: looking toward intensification. Agrofor Syst 88:957–981

    CrossRef  Google Scholar 

  • Clay J (2004) World agriculture and the environment. Island Press, Washington, DC

    Google Scholar 

  • Clough Y, Faust H, Tscharntke T (2009a) Cacao boom and bust: sustainability of agroforests and opportunities for biodiversity conservation. Conserv Lett 2:197–205

    CrossRef  Google Scholar 

  • Clough Y, Putra DD, Pitopang R, Tscharntke T (2009b) Local and landscape factors determine functional bird diversity in Indonesian cacao agroforestry. Biol Conserv 142:1032–1041

    CrossRef  Google Scholar 

  • Clough Y, Abrahamczyk S, Adams MO, Anshary A, Ariyanti N, Betz L, Buchori D, Cicuzza D, Darras K, Putra DD, Fiala B, Gradstein SR, Kessler M, Klein AM, Pitopang R, Sahari B, Scherber C, Schulze CH, Shahabuddin, Sporn S, Stenchly K, Tjitrosoedirdjo SS, Wanger TC, Weist M, Wielgoss A, Tscharntke T (2010) Biodiversity patterns and trophic interactions in human-dominated tropical landscapes in Sulawesi (Indonesia): plants, arthropods and vertebrates. In: Tscharntke T, Leuschner C, Veldkamp E, Faust H, Guhardja E, Bidin A (eds) Tropical rainforests and agroforests under global change: ecological and socio-economic valuations. Springer, Berlin, pp 15–71

    CrossRef  Google Scholar 

  • Clough Y, Barkmann J, Juhrbandt J, Kessler M, Wanger TC, Anshary A, Buchori D, Cicuzza D, Darras K, Putra DD, Erasmi S, Pitopang R, Schmidt C, Schulze CH, Seidel D, Steffan-dewenter I, Stenchly K, Vidal S, Weist M, Wielgoss AC, Tscharntke T (2011) Combining high biodiversity with high yields in tropical agroforests. Proc Natl Acad Sci U S A 108:8311–8316

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  • D’Souza G, Cyphers D, Phipps T (1993) Factors affecting the adoption of sustainable agricultural practices. Agric Res Econ Rev 22:159–165

    Google Scholar 

  • Dakwa JT (1976) The effects of shade and NPK fertilizers on the incidence of cocoa black pod disease in Ghana. Ghana J Agric Sci 9:179–184

    Google Scholar 

  • Daniels S (2006) Developing best practice guidelines for sustainable models of cocoa production to maximize their impacts on biodiversity protection. World Wildlife Fund Vietnam

    Google Scholar 

  • Dawoe EK, Quashie-Sam JS, Oppong SK (2014) Effect of land-use conversion from forest to cocoa agroforest on soil characteristics and quality of a Ferric Lixisol in lowland humid Ghana. Agrofor Syst 88:87–99

    CrossRef  Google Scholar 

  • DBR (2014) Cote d’Ivoire. Frontier country report. Deutsche Bank Research, Available: https://www.dbresearch.com/PROD/DBR_INTERNET_EN-PROD/PROD0000000000341639/Cote+d%27Ivoire.pdf. Accessed 08 June 2015

  • De Beenhouwer M, Aerts R, Honnay O (2013) A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agr Ecosyst Environ 175:1–7

    CrossRef  Google Scholar 

  • Deheuvels O, Avelino J, Somarriba E, Malezieux E (2012) Vegetation structure and productivity in cocoa-based agroforestry systems in Talamanca, Costa Rica. Agr Ecosyst Environ 149:181–188

    CrossRef  Google Scholar 

  • Duguma B, Gockowski J, Bakala J (2001) Smallholder Cacao (Theobroma cacao Linn.) cultivation in agroforestry systems of West and Central Africa: challenges and opportunities. Agrofor Syst 51:177–188

    CrossRef  Google Scholar 

  • Dzahini-Obiatey H, Domfeh O, Amoah FM (2010) Over seventy years of a viral disease of cocoa in Ghana: from researchers’ perspective. Afr J Agric Res 5:476–485

    Google Scholar 

  • FAOSTAT (2015) FAOSTAT database on agriculture. Available: http://faostat.fao.org. Accessed 08 June 2015

  • FIRCA (2008) Guide de la régénération des vergers de cacaoyer ou de cafiier en Côte d’Ivoire. Technical report, Fond Interprofessionnel pour la Recherche et le Conseil Agricole, République de Côte d’Ivoire

    Google Scholar 

  • Fonte SJ, Six J (2010) Earthworms and litter management contributions to ecosystem services in a tropical agroforestry system. Ecol Appl 20:1061–1073

    CrossRef  PubMed  Google Scholar 

  • Fonte SJ, Barrios E, Six J (2010a) Earthworm impacts on soil organic matter and fertilizer dynamics in tropical hillside agro-ecosystems of Honduras. Pedobiologia 53:327–335

    CrossRef  CAS  Google Scholar 

  • Fonte SJ, Barrios E, Six J (2010b) Earthworms, soil fertility and aggregate-associated soil organic matter dynamics in the Quesungual agroforestry system. Geoderma 155:320–328

    CrossRef  CAS  Google Scholar 

  • Forster D, Andres C, Verma R, Zundel C, Messmer MM, Maeder P (2013) Yield and economic performance of organic and conventional cotton-based farming systems – results from a field trial in India. Plos One 8

    Google Scholar 

  • Franzel S, Coe R, Cooper P, Place F, Scherr SJ (2001) Assessing the adoption potential of agroforestry practices in sub-Saharan Africa. Agr Syst 69:37–62

    CrossRef  Google Scholar 

  • Franzen M, Mulder MB (2007) Ecological, economic and social perspectives on cocoa production worldwide. Biodivers Conserv 16:3835–3849

    CrossRef  Google Scholar 

  • Gama-Rodrigues AC (2011) Soil organic matter, nutrient cycling and biological dinitrogen-fixation in agroforestry systems. Agrofor Syst 81:191–193

    CrossRef  Google Scholar 

  • Garrity DP (2004) Agroforestry and the achievement of the millennium development goals. Agrofor Syst 61–2:5–17

    Google Scholar 

  • Gidoin C, Avelino J, Deheuvels O, Cilas C, Bieng MAN (2014) Shade tree spatial structure and pod production explain frosty pod rot intensity in cacao agroforests, Costa Rica. Phytopathology 104:275–281

    CrossRef  PubMed  Google Scholar 

  • Gockowski J, Afari-Sefa V, Sarpong DB, Osei-Asare YB, Agyeman NF (2013) Improving the productivity and income of Ghanaian cocoa farmers while maintaining environmental services: what role for certification? Int J Agric Sustain 11:331–346

    CrossRef  Google Scholar 

  • Götsch E (1994) Breakthrough in agriculture. Fazenda Tres Colinas Agrossilvicultura Ltda 15

    Google Scholar 

  • Gruberg H (2011) Sostenibilidad de la Agroforestería Sucesional en Bolivia – Una evaluación económica, sociocultural y ecológica en tres estudios de caso en la zona del Alto Beni, Editorial Académica Española

    Google Scholar 

  • Gyau A, Smoot K, Kouame C, Diby L, Kahia J, Ofori D (2014) Farmer attitudes and intentions towards trees in cocoa (Theobroma cacao L.) farms in Cote d’Ivoire. Agrofor Syst 88:1035–1045

    CrossRef  Google Scholar 

  • Hatloy A, Kebede T, Adeba P, Core E (2012) Towards Côte d'Ivoire Sustainable Cocoa Initiative (CISCI). Baseline study report. Technical report, Fafo Institute for Applied International Studies, Norway.

    Google Scholar 

  • Henry M, Tittonell P, Manlay RJ, Bernoux M, Albrecht A, Vanlauwe B (2009) Biodiversity, carbon stocks and sequestration potential in aboveground biomass in smallholder farming systems of western Kenya. Agr Ecosyst Environ 129:238–252

    CrossRef  CAS  Google Scholar 

  • Herzog F (1994) Multipurpose shade trees in coffee and cocoa plantations in cote-divoire. Agrofor Syst 27:259–267

    CrossRef  Google Scholar 

  • Hirsch-Hadorn G, Bradley D, Pohl C, Rist S, Wiesmann U (2006) Implications of transdisciplinarity for sustainability research. Ecol Econ 60:119–128

    CrossRef  Google Scholar 

  • Holt-Giménez E (2006) Campesino a Campesino: voices from Latin America’s farmer to farmer movement for sustainable agriculture, food first books

    Google Scholar 

  • ICCO (2012) FAQ. Available: http://www.icco.org/faq/57-cocoa-production/123-how-many-smallholders-are-there-worldwide-producing-cocoa-what-proportion-of-cocoa-worldwide-is-produced-by-smallholders.html. Accessed 08 June 2015

  • ICCO (2014) Zurich certification workshop finds common ground. Available: http://www.icco.org/about-us/icco-news/253-zurich-certification-workshop-finds-common-ground.html. Accessed 08 June 2015

  • Inostrosa I, Fournier LA (1982) Allelopathic effect of gliricidia-sepium (Jacq.) Steud (madero-negro). Revista De Biologia Tropical 30:35–39

    Google Scholar 

  • Isaac M, Ulzen-Appiah F, Timmer V, Quashie-Sam S (2007) Early growth and nutritional response to resource competition in cocoa-shade intercropped systems. Plant and Soil 298:243–254

    CrossRef  CAS  Google Scholar 

  • Jacobi J, Schneider M, Bottazzi P, Pillco M, Calizaya P, Rist S (2013) Agroecosystem resilience and farmers’ perceptions of climate change impacts in cocoa farms in Alto Beni. Bolivia Renew Agric Food Syst 30:170–183

    CrossRef  Google Scholar 

  • Jacobi J, Andres C, Schneider M, Pillco M, Calizaya P, RIST S (2014) Carbon stocks, tree diversity, and the role of organic certification in different cocoa production systems in Alto Beni, Bolivia. Agrofor Syst 88:1117–1132

    CrossRef  Google Scholar 

  • Jacobi J, Bottazzi P, Schneider M, Huber S, Weidmann S, Rist S (2015) Farm resilience in organic and non-organic cocoa farming systems in Bolivia. Agroecol Sustain Food Syst (online first)

    Google Scholar 

  • Jaggi S, Handa DP, Gill AS, Singh NP (2004) Land-equivalent ratio for assessing yield advantages from agroforestry experiment. Indian J Agric Sci 74:76–79

    Google Scholar 

  • Jagoret P, Michel-Dounias I, Malézieux E (2011) Long-term dynamics of cocoa agroforests: a case study in central Cameroon. Agrofor Syst 81:267–278

    CrossRef  Google Scholar 

  • Jagoret P, Kwesseu J, Messie C, Michel-Dounias I, Malézieux E (2014) Farmers’ assessment of the use value of agrobiodiversity in complex cocoa agroforestry systems in central Cameroon. Agrofor Syst 88:983–1000

    CrossRef  Google Scholar 

  • Jaramillo J, Chabi-Olaye A, Kamonjo C, Jaramillo A, Vega FE, Poehling H-M, Borgemeister C (2009) Thermal tolerance of the coffee berry borer hypothenemus hampei: predictions of climate change impact on a tropical insect pest. Plos One 4:e6487

    PubMed Central  CrossRef  PubMed  Google Scholar 

  • Johns ND (1999) Conservation in Brazil’s chocolate forest: the unlikely persistence of the traditional cocoa agroecosystem. Environ Manage 23:31–47

    CrossRef  PubMed  Google Scholar 

  • July W (2008) Protocoloc estandarizado de la oferta tecnológica para el cultivo de cacao (Theobroma cacao L.) para Bolivia. Instituto Interamericano de Cooperación para la Agricultura IICA-Oficina Bolivia, La Paz

    Google Scholar 

  • Koko LK, Snoeck D, Lekadou TT, Assiri AA (2013) Cacao-fruit tree intercropping effects on cocoa yield, plant vigour and light interception in Cte d’Ivoire. Agrofor Syst 87:1043–1052

    CrossRef  Google Scholar 

  • Kouamé E (2010) Risk, risk aversion and choice of risk management strategies by cocoa farmers in Western Côte d’Ivoire. Available: www.csae.ox.ac.uk. Accessed 08 June 2015

  • Laederach P, Martinez-Valle A, Schroth G, Castro N (2013) Predicting the future climatic suitability for cocoa farming of the world’s leading producer countries, Ghana and Cte d’Ivoire. Clim Change 119:841–854

    CrossRef  Google Scholar 

  • Lin BB (2007) Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture. Agr Forest Meteorol 144:85–94

    CrossRef  Google Scholar 

  • Lin BB (2011) Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience 61:183–193

    CrossRef  Google Scholar 

  • Lin BB, Perfecto I, Vandermeer J (2008) Synergies between agricultural intensification and climate change could create surprising vulnerabilities for crops. Bioscience 58:847–854

    CrossRef  Google Scholar 

  • Matissek R, Reinecke O, Manning S (2012) Sustainability in the cocoa sector: review, challenges and approaches. LCI Moderne Ernährung Heute 1

    Google Scholar 

  • Mbow C, Smith P, Skole D, Duguma L, Bustamante M (2014) Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr Opin Environ Sustain 6:8–14

    CrossRef  Google Scholar 

  • Mc Dowell JZ, Hess JJ (2012) Accessing adaptation: multiple stressors on livelihoods in the Bolivian highlands under a changing climate. Global Environ Change Hum Policy Dimens 22:342–352

    CrossRef  Google Scholar 

  • MEDD (2011) Politique nationale de l’environnement. Ministère de l’Environnement et du Développement Durable, République de Côte d’Ivoire, 90 p

    Google Scholar 

  • MEF (2014) Le nouveau Code forestier ivoirien. Ministère des Eaux et Forêts, République de Côte d’Ivoire, 28 p

    Google Scholar 

  • Milz J (2006) Einfluss von Anbau- und Pflegemaßnahmen auf die Hexenbesenkrankheit (Crinipellis perniciosa (Stahel) Singer) bei Kakaoklonen im Siedlungsgebiet alto Beni – Bolivien. Humboldt-Universität, PhD

    Google Scholar 

  • Milz J (2010) Producción de Naranja (Citrus sinensis) en sistemas agroforestales sucesionales en Alto Beni, Bolivia - Estudio de caso. In: Beck S (ed) Biodiversidad y Ecología en Bolivia. Instituto de Ecologia, Universidad Mayor de San Andrés (UMSA), La Paz

    Google Scholar 

  • Milz J (2012) The gloomy outlook for cocoa production in the Ivory Coast and strategies for sustainable solutions for recovery and improvements of productivity. Ecotop Consult, La Paz

    Google Scholar 

  • N’Goran K (1998) Reflections on a durable cacao production: the situation in the Ivory Coast, Africa. Available: http://nationalzoo.si.edu/scbi/migratorybirds/research/cacao/koffi1.cfm. Accessed 08 June 2015

  • N’Guessan KF, Kebe BI, Aka AR, N’Guessan WP, Kouakou K, Tahi GM (2013) Major pests and diseases situations and damage assessment protocols in Côte D’Ivoire. Available: http://www.icco.org/about-us/international-cocoa-agreements/doc_download/699-mr-n-guessan-cnra.html. Accessed 08 June 2015

  • Nicholls CI, Ríos Osorio LA, Altieri MA (eds) (2013) Agroecología y resiliencia socioecológica: adaptándose al cambio climático. Red Iberoamericana de Agroecología para el Desarrollo de Sistemas Agrícolas Resilientes al Cambio Climático (REDAGRES), Red Adscrita al programa Iboamericano de Ciencia y Tecnología para el Desarrollo (CYTED), Sociedad Científica Latinoamericana de Agroecología (SOCLA), Medellín

    Google Scholar 

  • Obiri BD, Bright GA, Mcdonald MA, Anglaaere LCN, Cobbina J (2007) Financial analysis of shaded cocoa in Ghana. Agrofor Syst 71:139–149

    CrossRef  Google Scholar 

  • Ofori-Frimpong K, Asase A, Mason J, Danku L (2007) Shaded versus unshaded cocoa: implications on litter fall, decomposition, soil fertility and cocoa pod development. Presented at the symposium on multistrata agroforestry systems with perennial crops, CATIE Turrialba, Costa Rica, 17–21 Sept 2007

    Google Scholar 

  • Opoku IY, Akrofi AY, Appiah AA (2002) Shade trees are alternative hosts of the cocoa pathogen Phytophthora megakarya. Crop Prot 21:629–634

    CrossRef  Google Scholar 

  • Petithuguenin P (1998) Les conditions naturelles de production du cacao en Côte d’Ivoire, au Ghana et en Indonésie. Plantations Recherche Dév 5:393–405

    Google Scholar 

  • Philpott SM, Lin BB, Jha S, Brines SJ (2008) A multi-scale assessment of hurricane impacts on agricultural landscapes based on land use and topographic features. Agr Ecosyst Environ 128:12–20

    CrossRef  Google Scholar 

  • Ploetz RC (2007) Cacao diseases: important threats to chocolate production worldwide. Phytopathology 97:1634–1639

    CrossRef  PubMed  Google Scholar 

  • PNUD (2008) La otra frontera: Usos alternativos de recursos naturales en Bolivia. PNUD Bolivia, La Paz

    Google Scholar 

  • Pohl C, Rist S, Zimmermann A, Fry P, Gurung GS, Schneider F, Speranza CI, Kiteme B, Boillat S, Serrano E, Hadorn GH, Wiesmann U (2010) Researchers’ roles in knowledge co-production: experience from sustainability research in Kenya, Switzerland, Bolivia and Nepal. Sci Public Policy 37:267–281

    CrossRef  Google Scholar 

  • Pokorny B, De Jong W, Godar J, Pacheco P, Johnson J (2013) From large to small: Reorienting rural development policies in response to climate change, food security and poverty. Forest Policy Econ 36:52–59

    CrossRef  Google Scholar 

  • Purseglove J (1968) Tropical crops: dicotyledons. Longman, Harlow

    Google Scholar 

  • R_Core_Team (2014). A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/. Accessed 08 June 2015

  • Rice R, Greenberg A (2000) Cacao cultivation and the conservation of biological diversity. AMBIO: A J Hum Environ 29:167–173

    CrossRef  Google Scholar 

  • Rosset PM (1999) On the benefits of small farms. Food First Backgrounder 6:4

    Google Scholar 

  • Ruf F (2001) Tree crops as deforestation and reforestation agents: the case of cocoa in Cote d’Ivoire and Sulawesi. In: Kaimowitz D, Angelsen A (eds) Agricultural technologies and tropical deforestation. Cabi, Bogor

    Google Scholar 

  • Ruf FO (2011) The myth of complex cocoa agroforests: the case of Ghana. Hum Ecol 39:373–388

    CrossRef  Google Scholar 

  • Ruf F, Schroth G (2004) Chocolate forests and monocultures: a historical review of cocoa growing and its conflicting role in tropical deforestation and forest conservation. In: Schroth G, da Fonseca GAB, Harvey C, Gascon C, Vasconcelos HL, Izac AMN (eds) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, DC

    Google Scholar 

  • Ruf F, Zadi H (1998) Cocoa: from deforestation to reforestation. CIRAD. Paper prepared for the Smithsonian Sustainable Cocoa Congress Panama, 1998. Available: http://nationalzoo.si.edu/scbi/migratorybirds/research/cacao/ruf.cfm. Accessed 08 June 2015

  • Saj S, Jagoret P, Ngogue HT (2013) Carbon storage and density dynamics of associated trees in three contrasting Theobroma cacao agroforests of Central Cameroon. Agrofor Syst 87:1309–1320

    CrossRef  Google Scholar 

  • Schneider M, Andres C, Trujillo G, Alcon F, Amurrio P, Perez E, Weibel F, Milz J Under review. Prospects and limitations of growing cocoa under organic vs. conventional management in agroforestry vs. full-sun monoculture systems in Bolivia (Part I) – Agronomic results of the establishment phase. Agricultural Systems

    Google Scholar 

  • Schroth G, Harvey CA (2007) Biodiversity conservation in cocoa production landscapes: an overview. Biodivers Conserv 16:2237–2244

    CrossRef  Google Scholar 

  • Schroth G, Krauss U, Gasparotto L, Aguilar JAD, Vohland K (2000) Pests and diseases in agroforestry systems of the humid tropics. Agrofor Syst 50:199–241

    CrossRef  Google Scholar 

  • Schroth G, Bede L, Paiva A, Cassano C, Amorim A, Faria D, Mariano-Neto E, Martini AZ, Sambuichi RR, Lôbo R (2013) Contribution of agroforests to landscape carbon storage. Mitig Adapt Strat Glob Chang 1–16

    Google Scholar 

  • Schroth G, Jeusset A, Gomes AS, Florence C, Coelho N, Faria D, Läderach P (2014) Climate friendliness of cocoa agroforests is compatible with productivity increase. Mitig Adapt Strat Glob Chang 1–14

    Google Scholar 

  • Schulz J (2011) Imitating natural ecosystems through successional agroforestry for the regeneration of degraded lands - a case study of smallholder agriculture in northeastern Brazil. In: Rossi E, Montagnini F, Francesconi W (eds) Agroforestry as a tool for landscape restoration. Nova, New York

    Google Scholar 

  • Schulz B, Becker B, Götsch E (1994) Indigenous Knowledge in a “modern” sustainable agroforestry system – a case study from Brazil. Agrofor Syst 25:59–69

    CrossRef  Google Scholar 

  • Seiler C, Hutjes RWA, Kabat P (2013) Likely ranges of climate change in Bolivia. J Appl Meteorol Climatol 52:1303–1317

    CrossRef  Google Scholar 

  • Smith Dumont E, Gnahoua GM, Ohouo L, Sinclair FL, Vaast P (2014) Farmers in Côte d’Ivoire value integrating tree diversity in cocoa for the provision of ecosystem services. Agrofor Syst 88:1047–1066

    CrossRef  Google Scholar 

  • Somarriba E, Cerda R, Orozco L, Cifuentes M, Davila H, Espin T, Mavisoy H, Avila G, Alvarado E, Poveda V, Astorga C, Say E, Deheuvels O (2013) Carbon stocks and cocoa yields in agroforestry systems of Central America. Agr Ecosyst Environ 173:46–57

    CrossRef  Google Scholar 

  • Somarriba E, Suárez-Islas A, Calero-Borge W, Villota A, Castillo C, Vílchez S, Deheuvels O, Cerda R (2014) Cocoa–timber agroforestry systems: Theobroma cacao–Cordia alliodora in Central America. Agrofor Syst 88:1001–1019

    CrossRef  Google Scholar 

  • Sonwa DJ, Nkongmeneck BA, Weise SF, Tchatat M, Adesina AA, Janssens MJJ (2007) Diversity of plants in cocoa agroforests in the humid forest zone of Southern Cameroon. Biodivers Conserv 16:2385–2400

    CrossRef  Google Scholar 

  • Sonwa D, Weise S, Schroth G, Janssens MJ, Howard-Yana S (2014) Plant diversity management in cocoa agroforestry systems in West and Central Africa—effects of markets and household needs. Agrofor Syst 88:1021–1034

    CrossRef  Google Scholar 

  • Sood KK, Mitchell CP (2006) Importance of human psychological variables in designing socially acceptable agroforestry systems. Forests Trees Livelihoods 16:127–137

    CrossRef  Google Scholar 

  • Soto-Pinto L, Anzueto M, Mendoza J, Jimenez Ferrer G, De Jong B (2010) Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor Syst 78:39–51

    CrossRef  Google Scholar 

  • Sperber CF, Nakayama K, Valverde MJ, Neves FD (2004) Tree species richness and density affect parasitoid diversity in cacao agroforestry. Basic Appl Ecol 5:241–251

    CrossRef  Google Scholar 

  • Staver C, Guharay F, Monterroso D, Muschler RG (2001) Designing pest-suppressive multistrata perennial crop systems: shade-grown coffee in Central America. Agrofor Syst 53:151–170

    CrossRef  Google Scholar 

  • Steffan-Dewenter I, Kessler M, Barkmann J, Bos MM, Buchori D, Erasmi S, Faust H, Gerold G, Glenk K, Gradstein SR, Guhardja E, Harteveld M, Hertel D, Höhn P, Kappas M, Köhler S, Leuschner C, Maertens M, Marggraf R, Migge-Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A, Tjitrosoedirdjo SS, Tjitrosoemito S, Twele A, Weber R, Woltmann L, Zeller M, Tscharntke T (2007) Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. Proc Natl Acad Sci 104:4973–4978

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  • TCC (2010) Cocoa barometer 2010. Tropical commodity coalition for sustainable tea, coffee and cocoa, 24p

    Google Scholar 

  • Thorlakson T, Neufeldt H (2012) Reducing subsistence farmers’ vulnerability to climate change: evaluating the potential contributions of agroforestry in western Kenya. Agric Food Secur 1:1–13 (2 October 2012)

    CrossRef  Google Scholar 

  • Todt B (2010) Soil fertility in monoculture and succesional agroforestry land use systems for citrus sinensis in Alto Beni, Bolivia. Georg-August-Universität, Diplom

    Google Scholar 

  • Todt B, Kühne RF, Gerold G (2009) Evaluation of soil fertility in monoculture and succesional agroforestry land use systems for citrus sinensis, in Alto Beni, Bolivia. Tropentag conference, Hamburg, 6–8 Oct 2009

    Google Scholar 

  • Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Hölscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wanger TC (2011) Multifunctional shade-tree management in tropical agroforestry landscapes – a review. J Appl Ecol 48:619–629

    CrossRef  Google Scholar 

  • Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59

    CrossRef  Google Scholar 

  • Vaast P, Somarriba E (2014) Trade-offs between crop intensification and ecosystem services: the role of agroforestry in cocoa cultivation. Agrofor Syst 88:947–956

    CrossRef  Google Scholar 

  • Verchot LV, Noordwijk MV, Kandji S, Tomich T, Ong C, Albrecht A, Mackensen J, Bantilan C, Anupama KV, Palm C (2007) Climate change: linking adaptation and mitigation through agroforestry. Mitig Adapt Strat Glob Chang 12:901–918

    CrossRef  Google Scholar 

  • Vieira DLM, Holl KD, Peneireiro FM (2009) Agro-successional restoration as a strategy to facilitate tropical forest recovery. Restoration Ecol 17:451–459

    CrossRef  Google Scholar 

  • Wood GAR, Lass RA (2001) Cocoa. Blackwell Science, Oxford

    CrossRef  Google Scholar 

  • World Bank (2009) Bolivia country note on climate change aspects in agriculture. World Bank, Washington, DC

    Google Scholar 

Download references

Acknowledgements

Special thanks go to Dr. Andres Tschannen (Biopartenaire Ltd./Barry Callebaut, Côte d’Ivoire), Dr. Lucien Diby (ICRAF, Côte d’Ivoire), and Dr. Joachim Milz (Ecotop, Bolivia) for useful inputs to the content of this manuscript. Thanks are due to El Ceibo for providing the land and the right to use it for some 20 years for the on-station trial in Bolivia. We gratefully acknowledge the continuous support in coordination by Renate Seidel and Stephan Beck (Institute of Ecology, UMSA, La Paz, Bolivia). The field and desktop work of the whole FiBL/Ecotop team in Bolivia are also gratefully acknowledged. We thank Tina Hirschbuehl for editing the manuscript. Our sincere acknowledgement goes to the organizations and donors who made the different studies which contributed to this review possible: The Research Institute of Organic Agriculture (FiBL, Switzerland), Centre for Development and Environment (CDE, University of Bern, Switzerland), the Swiss National Science Foundation (SNSF), Biovision Foundation for Ecological Development (Switzerland), Coop Sustainability Fund (Switzerland), Liechtenstein Development Service (LED) and the Swiss Agency for Development and Cooperation (SDC). Last but not least we would like to extend our gratitude to all the cocoa farmers who through their continuous work enable us researchers to work on the advancement of sustainable cocoa production systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Andres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Andres, C., Comoé, H., Beerli, A., Schneider, M., Rist, S., Jacobi, J. (2016). Cocoa in Monoculture and Dynamic Agroforestry. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-26777-7_3

Download citation