Cocoa in Monoculture and Dynamic Agroforestry

  • Christian AndresEmail author
  • Hermann Comoé
  • Anna Beerli
  • Monika Schneider
  • Stephan Rist
  • Johanna Jacobi
Part of the Sustainable Agriculture Reviews book series (SARV, volume 19)


The growing demand for cocoa beans and products worldwide has been met by expanding the area under cocoa production while productivity per hectare has stagnated at a low level of around 450 kg/ha per year in the last decade. Throughout the tropics cocoa has increasingly been cultivated in full-sun monocultures in order to maximize short-term productivity and profitability, which has been associated with soil erosion and degradation, biodiversity loss, as well as increased susceptibility to climate change impacts and pests and diseases. Dynamic agroforestry systems are an alternative production method which has long been practiced in Latin American countries such as Bolivia. Through mimicking natural forests, these systems offer multiple benefits such as soil fertility enhancement, reduction in pest and disease pressure, erosion control, and revenue diversification. In Côte d’Ivoire, where most cocoa is still produced in monocultures, dynamic agroforestry systems were recently introduced on a small scale.

Here we use different research projects conducted in Bolivia and Côte d’Ivoire as case studies to review productivity, soil fertility as well as pests and diseases in dynamic agroforestry systems and monocultures, and outline factors influencing the adoption of dynamic agroforestry systems from the farmers’ perspective. We found productivity under agroforestry systems to be either similar or higher compared to monocultures. We recorded 161 % higher total system yields in an on-station field trial and an on-farm study in Bolivia, and in an on-farm study in Côte d’Ivoire. Cocoa yields were 12–46 % higher in agroforestry systems compared to monocultures. In addition, cocoa in dynamic agroforestry systems exhibited significantly less incidences of witches’ broom, Moniliophthora perniciosa, compared to monocultures in Bolivia.

Farmers in Bolivia and Côte d’Ivoire observed more soil-related problems and incidences of pests and diseases in monocultures than in agroforestry systems, and they showed high interest to learn dynamic agroforestry management practices. However, adoption was strongly limited to project areas where dynamic agroforestry plots had been installed with farmers’ participation. This highlights the importance of local organizations such as Ecotop, Ecosaf, El Ceibo and Biopartenaire Ltd., who implement such interventions on the ground. However, we found that there is space for improvement in the way organizations interact with farmers, especially in Côte d’Ivoire. Interactive knowledge sharing methods such as farmer field schools may help to stimulate farmers’ protagonism and give scientists and external consultants the role of facilitators who integrate different forms of knowledge and make them visible to different stakeholders. Such a social learning process requires transdisciplinary research for the development of decision support tools which facilitate the determination of both optimal planting densities and shade levels, as well as adequate combinations of trees and accompanying species in order to achieve effective regulation of pests and diseases while ensuring favourable growing conditions.


Cocoa Bolivia Côte d’Ivoire Dynamic agroforestry systems Pests and diseases Resilience Participatory on-farm research Transdisciplinary research 



Special thanks go to Dr. Andres Tschannen (Biopartenaire Ltd./Barry Callebaut, Côte d’Ivoire), Dr. Lucien Diby (ICRAF, Côte d’Ivoire), and Dr. Joachim Milz (Ecotop, Bolivia) for useful inputs to the content of this manuscript. Thanks are due to El Ceibo for providing the land and the right to use it for some 20 years for the on-station trial in Bolivia. We gratefully acknowledge the continuous support in coordination by Renate Seidel and Stephan Beck (Institute of Ecology, UMSA, La Paz, Bolivia). The field and desktop work of the whole FiBL/Ecotop team in Bolivia are also gratefully acknowledged. We thank Tina Hirschbuehl for editing the manuscript. Our sincere acknowledgement goes to the organizations and donors who made the different studies which contributed to this review possible: The Research Institute of Organic Agriculture (FiBL, Switzerland), Centre for Development and Environment (CDE, University of Bern, Switzerland), the Swiss National Science Foundation (SNSF), Biovision Foundation for Ecological Development (Switzerland), Coop Sustainability Fund (Switzerland), Liechtenstein Development Service (LED) and the Swiss Agency for Development and Cooperation (SDC). Last but not least we would like to extend our gratitude to all the cocoa farmers who through their continuous work enable us researchers to work on the advancement of sustainable cocoa production systems.


  1. Altieri M (2004) Linkingecologists and traditional farmers in the search for sustainable agriculture. Front Ecol Environ 2:35–42CrossRefGoogle Scholar
  2. Altieri M, Nicholls C (2013) The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim Change, 1–13. doi: 10.1007/s10584-013-0909-y Google Scholar
  3. Analog Forestry Network (RIFA) (2012) Field guide to analog forestry - A basic overview. Available: Accessed 29 November 2015
  4. Aneani F, Anchirinah VM, Owusu-Ansah F, Asamoah M (2011) An analysis of the extent and determinants of crop diversification by cocoa (Theobroma cacao) farmers in Ghana. Af J Agric Res 6:4277–4287Google Scholar
  5. Anim-Kwapong GJ, Frimpong EB (2006) Vulnerability of agriculture to climate change- impact of climate change on cocoa production. In: 2, R. O. V. A. A. A. U. T. N. C. C. S. A. P. P. (ed) Cocoa Research Institute of Ghana, TafoGoogle Scholar
  6. Asare R (2005) Cocoa agroforests in West Africa: a look at activitues on preferred trees in the farming systems. Forest & Landscape working papers, 6–2005.Forest & Landscape Denmark, Horsholm, pp 1–77Google Scholar
  7. Asare R (2006) A review on cocoa agroforestry as a means for biodiversity conservation. In: Centre for Forest, L. A. P. D (eds) World Cocoa Foundation partnership conference, BrusselsGoogle Scholar
  8. Asare R, Afari-Sefa V, Osei-Owusu Y, Pabi O (2014) Cocoa agroforestry for increasing forest connectivity in a fragmented landscape in Ghana. Agrofor Syst 88:1143–1156CrossRefGoogle Scholar
  9. Assiri AA, René YG, Olivier D, Ismaël B, Jules KZ, Amoncho A (2009) The agronomic characteristics of the cacao (Theobroma cocoa L.) orchards in Cote d’Ivoire. J Anim Plant Sci (JAPS) 2:55–66Google Scholar
  10. Bazoberry CO, Salazar CC (2008) El Cacao en Bolivia – Una alternativa económica de base campesina indígena. Centro de Investigación y Promoción del Campesinado (CIPCA), La PazGoogle Scholar
  11. Bedimo JAM, Dufour BP, Cilas C, Avelino J (2012) Effects of shade trees on Coffea arabica pests and diseases. Cahiers Agric 21:89–97Google Scholar
  12. Beer J (1987) Advantages, disadvantages and desirable characteristics of shade trees for coffee, cacao and tea. Agrofor Syst 5:3–13CrossRefGoogle Scholar
  13. Beer J, Muschler R, Kass D, Somarriba E (1998) Shade management in coffee and cacao plantations. Agrofor Syst 38:139–164CrossRefGoogle Scholar
  14. Beerli A (2014) Short-term economic and non-economic aspects for adopting dynamic agroforestry in cocoa production in Côte d’Ivoire. Master thesis, Department of Agricultural Economics, Swiss Federal Institute of Technolgy (ETH) Zurich, p 77Google Scholar
  15. Bellow JG, Nair PKR, Martin TA (2008) Tree-crop interactions in fruit tree-based agroforestry systems in the western highlands of Guatemala: component yields and system performance. Springer, DordrechtGoogle Scholar
  16. Belsky JM, Siebert SF (2003) Cultivating cacao: implications of sun-grown cacao on local food security and environmental sustainability. Agric Hum Values 20:277–285CrossRefGoogle Scholar
  17. Bentley JW, Boa E, Stonehouse J (2004) Neighbor trees: shade, intercropping, and cacao in Ecuador. Hum Ecol 32:241–270CrossRefGoogle Scholar
  18. Bieng MAN, Gidoin C, Avelino J, Cilas C, Deheuvels O, Wery J (2013) Diversity and spatial clustering of shade trees affect cacao yield and pathogen pressure in Costa Rican agroforests. Basic Appl Ecol 14:329–336CrossRefGoogle Scholar
  19. Bisseleua HBD, Fotio D, Yede D, Missoup AD, Vidal S (2013) Shade tree diversity, cocoa pest damage, yield compensating inputs and farmers’ net returns in West Africa. Plos One 8:e56115CrossRefPubMedGoogle Scholar
  20. Bos MM, Steffan-Dewenter I, Tscharntke T (2007) Shade tree management affects fruit abortion, insect pests and pathogens of cacao. Agr Ecosyst Environ 120:201–205CrossRefGoogle Scholar
  21. Buresh RJ, Rowe EC, Livesley SJ, Cadisch G, Mafongoya P (2004) Opportunities for capture of deep soil nutrients. In: van Noordwijk M, Cadisch G, Ong CK (eds) Below-ground interactions in tropical agro-ecosystems: concepts and models with multiple plant components. CABI Publishing, Wallingford, pp 109–123CrossRefGoogle Scholar
  22. Campbell CAM (1984) The influence of overhead shade and fertilizers on the homoptera of mature upper-amazon cocoa trees in Ghana. Bull Entomol Res 74:163–174CrossRefGoogle Scholar
  23. CCC (2015) Vers La Durabilité Du Secteur Du Cacao En Côte D’Ivoire - Quelles Pourraient Etre Les Contributions De Gisco. Le Conseil du café-cacao, Available via dialogue. Accessed 8 June 2015
  24. Cerda R, Deheuvels O, Calvache D, Niehaus L, Saenz Y, Kent J, Vilchez S, Villota A, Martinez C, Somarriba E (2014) Contribution of cocoa agroforestry systems to family income and domestic consumption: looking toward intensification. Agrofor Syst 88:957–981CrossRefGoogle Scholar
  25. Clay J (2004) World agriculture and the environment. Island Press, Washington, DCGoogle Scholar
  26. Clough Y, Faust H, Tscharntke T (2009a) Cacao boom and bust: sustainability of agroforests and opportunities for biodiversity conservation. Conserv Lett 2:197–205CrossRefGoogle Scholar
  27. Clough Y, Putra DD, Pitopang R, Tscharntke T (2009b) Local and landscape factors determine functional bird diversity in Indonesian cacao agroforestry. Biol Conserv 142:1032–1041CrossRefGoogle Scholar
  28. Clough Y, Abrahamczyk S, Adams MO, Anshary A, Ariyanti N, Betz L, Buchori D, Cicuzza D, Darras K, Putra DD, Fiala B, Gradstein SR, Kessler M, Klein AM, Pitopang R, Sahari B, Scherber C, Schulze CH, Shahabuddin, Sporn S, Stenchly K, Tjitrosoedirdjo SS, Wanger TC, Weist M, Wielgoss A, Tscharntke T (2010) Biodiversity patterns and trophic interactions in human-dominated tropical landscapes in Sulawesi (Indonesia): plants, arthropods and vertebrates. In: Tscharntke T, Leuschner C, Veldkamp E, Faust H, Guhardja E, Bidin A (eds) Tropical rainforests and agroforests under global change: ecological and socio-economic valuations. Springer, Berlin, pp 15–71CrossRefGoogle Scholar
  29. Clough Y, Barkmann J, Juhrbandt J, Kessler M, Wanger TC, Anshary A, Buchori D, Cicuzza D, Darras K, Putra DD, Erasmi S, Pitopang R, Schmidt C, Schulze CH, Seidel D, Steffan-dewenter I, Stenchly K, Vidal S, Weist M, Wielgoss AC, Tscharntke T (2011) Combining high biodiversity with high yields in tropical agroforests. Proc Natl Acad Sci U S A 108:8311–8316PubMedCentralCrossRefPubMedGoogle Scholar
  30. D’Souza G, Cyphers D, Phipps T (1993) Factors affecting the adoption of sustainable agricultural practices. Agric Res Econ Rev 22:159–165Google Scholar
  31. Dakwa JT (1976) The effects of shade and NPK fertilizers on the incidence of cocoa black pod disease in Ghana. Ghana J Agric Sci 9:179–184Google Scholar
  32. Daniels S (2006) Developing best practice guidelines for sustainable models of cocoa production to maximize their impacts on biodiversity protection. World Wildlife Fund VietnamGoogle Scholar
  33. Dawoe EK, Quashie-Sam JS, Oppong SK (2014) Effect of land-use conversion from forest to cocoa agroforest on soil characteristics and quality of a Ferric Lixisol in lowland humid Ghana. Agrofor Syst 88:87–99CrossRefGoogle Scholar
  34. DBR (2014) Cote d’Ivoire. Frontier country report. Deutsche Bank Research, Available: Accessed 08 June 2015
  35. De Beenhouwer M, Aerts R, Honnay O (2013) A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agr Ecosyst Environ 175:1–7CrossRefGoogle Scholar
  36. Deheuvels O, Avelino J, Somarriba E, Malezieux E (2012) Vegetation structure and productivity in cocoa-based agroforestry systems in Talamanca, Costa Rica. Agr Ecosyst Environ 149:181–188CrossRefGoogle Scholar
  37. Duguma B, Gockowski J, Bakala J (2001) Smallholder Cacao (Theobroma cacao Linn.) cultivation in agroforestry systems of West and Central Africa: challenges and opportunities. Agrofor Syst 51:177–188CrossRefGoogle Scholar
  38. Dzahini-Obiatey H, Domfeh O, Amoah FM (2010) Over seventy years of a viral disease of cocoa in Ghana: from researchers’ perspective. Afr J Agric Res 5:476–485Google Scholar
  39. FAOSTAT (2015) FAOSTAT database on agriculture. Available: Accessed 08 June 2015
  40. FIRCA (2008) Guide de la régénération des vergers de cacaoyer ou de cafiier en Côte d’Ivoire. Technical report, Fond Interprofessionnel pour la Recherche et le Conseil Agricole, République de Côte d’IvoireGoogle Scholar
  41. Fonte SJ, Six J (2010) Earthworms and litter management contributions to ecosystem services in a tropical agroforestry system. Ecol Appl 20:1061–1073CrossRefPubMedGoogle Scholar
  42. Fonte SJ, Barrios E, Six J (2010a) Earthworm impacts on soil organic matter and fertilizer dynamics in tropical hillside agro-ecosystems of Honduras. Pedobiologia 53:327–335CrossRefGoogle Scholar
  43. Fonte SJ, Barrios E, Six J (2010b) Earthworms, soil fertility and aggregate-associated soil organic matter dynamics in the Quesungual agroforestry system. Geoderma 155:320–328CrossRefGoogle Scholar
  44. Forster D, Andres C, Verma R, Zundel C, Messmer MM, Maeder P (2013) Yield and economic performance of organic and conventional cotton-based farming systems – results from a field trial in India. Plos One 8Google Scholar
  45. Franzel S, Coe R, Cooper P, Place F, Scherr SJ (2001) Assessing the adoption potential of agroforestry practices in sub-Saharan Africa. Agr Syst 69:37–62CrossRefGoogle Scholar
  46. Franzen M, Mulder MB (2007) Ecological, economic and social perspectives on cocoa production worldwide. Biodivers Conserv 16:3835–3849CrossRefGoogle Scholar
  47. Gama-Rodrigues AC (2011) Soil organic matter, nutrient cycling and biological dinitrogen-fixation in agroforestry systems. Agrofor Syst 81:191–193CrossRefGoogle Scholar
  48. Garrity DP (2004) Agroforestry and the achievement of the millennium development goals. Agrofor Syst 61–2:5–17Google Scholar
  49. Gidoin C, Avelino J, Deheuvels O, Cilas C, Bieng MAN (2014) Shade tree spatial structure and pod production explain frosty pod rot intensity in cacao agroforests, Costa Rica. Phytopathology 104:275–281CrossRefPubMedGoogle Scholar
  50. Gockowski J, Afari-Sefa V, Sarpong DB, Osei-Asare YB, Agyeman NF (2013) Improving the productivity and income of Ghanaian cocoa farmers while maintaining environmental services: what role for certification? Int J Agric Sustain 11:331–346CrossRefGoogle Scholar
  51. Götsch E (1994) Breakthrough in agriculture. Fazenda Tres Colinas Agrossilvicultura Ltda 15Google Scholar
  52. Gruberg H (2011) Sostenibilidad de la Agroforestería Sucesional en Bolivia – Una evaluación económica, sociocultural y ecológica en tres estudios de caso en la zona del Alto Beni, Editorial Académica EspañolaGoogle Scholar
  53. Gyau A, Smoot K, Kouame C, Diby L, Kahia J, Ofori D (2014) Farmer attitudes and intentions towards trees in cocoa (Theobroma cacao L.) farms in Cote d’Ivoire. Agrofor Syst 88:1035–1045CrossRefGoogle Scholar
  54. Hatloy A, Kebede T, Adeba P, Core E (2012) Towards Côte d'Ivoire Sustainable Cocoa Initiative (CISCI). Baseline study report. Technical report, Fafo Institute for Applied International Studies, Norway.Google Scholar
  55. Henry M, Tittonell P, Manlay RJ, Bernoux M, Albrecht A, Vanlauwe B (2009) Biodiversity, carbon stocks and sequestration potential in aboveground biomass in smallholder farming systems of western Kenya. Agr Ecosyst Environ 129:238–252CrossRefGoogle Scholar
  56. Herzog F (1994) Multipurpose shade trees in coffee and cocoa plantations in cote-divoire. Agrofor Syst 27:259–267CrossRefGoogle Scholar
  57. Hirsch-Hadorn G, Bradley D, Pohl C, Rist S, Wiesmann U (2006) Implications of transdisciplinarity for sustainability research. Ecol Econ 60:119–128CrossRefGoogle Scholar
  58. Holt-Giménez E (2006) Campesino a Campesino: voices from Latin America’s farmer to farmer movement for sustainable agriculture, food first booksGoogle Scholar
  59. ICCO (2014) Zurich certification workshop finds common ground. Available: Accessed 08 June 2015
  60. Inostrosa I, Fournier LA (1982) Allelopathic effect of gliricidia-sepium (Jacq.) Steud (madero-negro). Revista De Biologia Tropical 30:35–39Google Scholar
  61. Isaac M, Ulzen-Appiah F, Timmer V, Quashie-Sam S (2007) Early growth and nutritional response to resource competition in cocoa-shade intercropped systems. Plant and Soil 298:243–254CrossRefGoogle Scholar
  62. Jacobi J, Schneider M, Bottazzi P, Pillco M, Calizaya P, Rist S (2013) Agroecosystem resilience and farmers’ perceptions of climate change impacts in cocoa farms in Alto Beni. Bolivia Renew Agric Food Syst 30:170–183CrossRefGoogle Scholar
  63. Jacobi J, Andres C, Schneider M, Pillco M, Calizaya P, RIST S (2014) Carbon stocks, tree diversity, and the role of organic certification in different cocoa production systems in Alto Beni, Bolivia. Agrofor Syst 88:1117–1132CrossRefGoogle Scholar
  64. Jacobi J, Bottazzi P, Schneider M, Huber S, Weidmann S, Rist S (2015) Farm resilience in organic and non-organic cocoa farming systems in Bolivia. Agroecol Sustain Food Syst (online first)Google Scholar
  65. Jaggi S, Handa DP, Gill AS, Singh NP (2004) Land-equivalent ratio for assessing yield advantages from agroforestry experiment. Indian J Agric Sci 74:76–79Google Scholar
  66. Jagoret P, Michel-Dounias I, Malézieux E (2011) Long-term dynamics of cocoa agroforests: a case study in central Cameroon. Agrofor Syst 81:267–278CrossRefGoogle Scholar
  67. Jagoret P, Kwesseu J, Messie C, Michel-Dounias I, Malézieux E (2014) Farmers’ assessment of the use value of agrobiodiversity in complex cocoa agroforestry systems in central Cameroon. Agrofor Syst 88:983–1000CrossRefGoogle Scholar
  68. Jaramillo J, Chabi-Olaye A, Kamonjo C, Jaramillo A, Vega FE, Poehling H-M, Borgemeister C (2009) Thermal tolerance of the coffee berry borer hypothenemus hampei: predictions of climate change impact on a tropical insect pest. Plos One 4:e6487PubMedCentralCrossRefPubMedGoogle Scholar
  69. Johns ND (1999) Conservation in Brazil’s chocolate forest: the unlikely persistence of the traditional cocoa agroecosystem. Environ Manage 23:31–47CrossRefPubMedGoogle Scholar
  70. July W (2008) Protocoloc estandarizado de la oferta tecnológica para el cultivo de cacao (Theobroma cacao L.) para Bolivia. Instituto Interamericano de Cooperación para la Agricultura IICA-Oficina Bolivia, La PazGoogle Scholar
  71. Koko LK, Snoeck D, Lekadou TT, Assiri AA (2013) Cacao-fruit tree intercropping effects on cocoa yield, plant vigour and light interception in Cte d’Ivoire. Agrofor Syst 87:1043–1052CrossRefGoogle Scholar
  72. Kouamé E (2010) Risk, risk aversion and choice of risk management strategies by cocoa farmers in Western Côte d’Ivoire. Available: Accessed 08 June 2015
  73. Laederach P, Martinez-Valle A, Schroth G, Castro N (2013) Predicting the future climatic suitability for cocoa farming of the world’s leading producer countries, Ghana and Cte d’Ivoire. Clim Change 119:841–854CrossRefGoogle Scholar
  74. Lin BB (2007) Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture. Agr Forest Meteorol 144:85–94CrossRefGoogle Scholar
  75. Lin BB (2011) Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience 61:183–193CrossRefGoogle Scholar
  76. Lin BB, Perfecto I, Vandermeer J (2008) Synergies between agricultural intensification and climate change could create surprising vulnerabilities for crops. Bioscience 58:847–854CrossRefGoogle Scholar
  77. Matissek R, Reinecke O, Manning S (2012) Sustainability in the cocoa sector: review, challenges and approaches. LCI Moderne Ernährung Heute 1Google Scholar
  78. Mbow C, Smith P, Skole D, Duguma L, Bustamante M (2014) Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr Opin Environ Sustain 6:8–14CrossRefGoogle Scholar
  79. Mc Dowell JZ, Hess JJ (2012) Accessing adaptation: multiple stressors on livelihoods in the Bolivian highlands under a changing climate. Global Environ Change Hum Policy Dimens 22:342–352CrossRefGoogle Scholar
  80. MEDD (2011) Politique nationale de l’environnement. Ministère de l’Environnement et du Développement Durable, République de Côte d’Ivoire, 90 pGoogle Scholar
  81. MEF (2014) Le nouveau Code forestier ivoirien. Ministère des Eaux et Forêts, République de Côte d’Ivoire, 28 pGoogle Scholar
  82. Milz J (2006) Einfluss von Anbau- und Pflegemaßnahmen auf die Hexenbesenkrankheit (Crinipellis perniciosa (Stahel) Singer) bei Kakaoklonen im Siedlungsgebiet alto Beni – Bolivien. Humboldt-Universität, PhDGoogle Scholar
  83. Milz J (2010) Producción de Naranja (Citrus sinensis) en sistemas agroforestales sucesionales en Alto Beni, Bolivia - Estudio de caso. In: Beck S (ed) Biodiversidad y Ecología en Bolivia. Instituto de Ecologia, Universidad Mayor de San Andrés (UMSA), La PazGoogle Scholar
  84. Milz J (2012) The gloomy outlook for cocoa production in the Ivory Coast and strategies for sustainable solutions for recovery and improvements of productivity. Ecotop Consult, La PazGoogle Scholar
  85. N’Goran K (1998) Reflections on a durable cacao production: the situation in the Ivory Coast, Africa. Available: Accessed 08 June 2015
  86. N’Guessan KF, Kebe BI, Aka AR, N’Guessan WP, Kouakou K, Tahi GM (2013) Major pests and diseases situations and damage assessment protocols in Côte D’Ivoire. Available: Accessed 08 June 2015
  87. Nicholls CI, Ríos Osorio LA, Altieri MA (eds) (2013) Agroecología y resiliencia socioecológica: adaptándose al cambio climático. Red Iberoamericana de Agroecología para el Desarrollo de Sistemas Agrícolas Resilientes al Cambio Climático (REDAGRES), Red Adscrita al programa Iboamericano de Ciencia y Tecnología para el Desarrollo (CYTED), Sociedad Científica Latinoamericana de Agroecología (SOCLA), MedellínGoogle Scholar
  88. Obiri BD, Bright GA, Mcdonald MA, Anglaaere LCN, Cobbina J (2007) Financial analysis of shaded cocoa in Ghana. Agrofor Syst 71:139–149CrossRefGoogle Scholar
  89. Ofori-Frimpong K, Asase A, Mason J, Danku L (2007) Shaded versus unshaded cocoa: implications on litter fall, decomposition, soil fertility and cocoa pod development. Presented at the symposium on multistrata agroforestry systems with perennial crops, CATIE Turrialba, Costa Rica, 17–21 Sept 2007Google Scholar
  90. Opoku IY, Akrofi AY, Appiah AA (2002) Shade trees are alternative hosts of the cocoa pathogen Phytophthora megakarya. Crop Prot 21:629–634CrossRefGoogle Scholar
  91. Petithuguenin P (1998) Les conditions naturelles de production du cacao en Côte d’Ivoire, au Ghana et en Indonésie. Plantations Recherche Dév 5:393–405Google Scholar
  92. Philpott SM, Lin BB, Jha S, Brines SJ (2008) A multi-scale assessment of hurricane impacts on agricultural landscapes based on land use and topographic features. Agr Ecosyst Environ 128:12–20CrossRefGoogle Scholar
  93. Ploetz RC (2007) Cacao diseases: important threats to chocolate production worldwide. Phytopathology 97:1634–1639CrossRefPubMedGoogle Scholar
  94. PNUD (2008) La otra frontera: Usos alternativos de recursos naturales en Bolivia. PNUD Bolivia, La PazGoogle Scholar
  95. Pohl C, Rist S, Zimmermann A, Fry P, Gurung GS, Schneider F, Speranza CI, Kiteme B, Boillat S, Serrano E, Hadorn GH, Wiesmann U (2010) Researchers’ roles in knowledge co-production: experience from sustainability research in Kenya, Switzerland, Bolivia and Nepal. Sci Public Policy 37:267–281CrossRefGoogle Scholar
  96. Pokorny B, De Jong W, Godar J, Pacheco P, Johnson J (2013) From large to small: Reorienting rural development policies in response to climate change, food security and poverty. Forest Policy Econ 36:52–59CrossRefGoogle Scholar
  97. Purseglove J (1968) Tropical crops: dicotyledons. Longman, HarlowGoogle Scholar
  98. R_Core_Team (2014). A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0, Accessed 08 June 2015
  99. Rice R, Greenberg A (2000) Cacao cultivation and the conservation of biological diversity. AMBIO: A J Hum Environ 29:167–173CrossRefGoogle Scholar
  100. Rosset PM (1999) On the benefits of small farms. Food First Backgrounder 6:4Google Scholar
  101. Ruf F (2001) Tree crops as deforestation and reforestation agents: the case of cocoa in Cote d’Ivoire and Sulawesi. In: Kaimowitz D, Angelsen A (eds) Agricultural technologies and tropical deforestation. Cabi, BogorGoogle Scholar
  102. Ruf FO (2011) The myth of complex cocoa agroforests: the case of Ghana. Hum Ecol 39:373–388CrossRefGoogle Scholar
  103. Ruf F, Schroth G (2004) Chocolate forests and monocultures: a historical review of cocoa growing and its conflicting role in tropical deforestation and forest conservation. In: Schroth G, da Fonseca GAB, Harvey C, Gascon C, Vasconcelos HL, Izac AMN (eds) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, DCGoogle Scholar
  104. Ruf F, Zadi H (1998) Cocoa: from deforestation to reforestation. CIRAD. Paper prepared for the Smithsonian Sustainable Cocoa Congress Panama, 1998. Available: Accessed 08 June 2015
  105. Saj S, Jagoret P, Ngogue HT (2013) Carbon storage and density dynamics of associated trees in three contrasting Theobroma cacao agroforests of Central Cameroon. Agrofor Syst 87:1309–1320CrossRefGoogle Scholar
  106. Schneider M, Andres C, Trujillo G, Alcon F, Amurrio P, Perez E, Weibel F, Milz J Under review. Prospects and limitations of growing cocoa under organic vs. conventional management in agroforestry vs. full-sun monoculture systems in Bolivia (Part I) – Agronomic results of the establishment phase. Agricultural Systems Google Scholar
  107. Schroth G, Harvey CA (2007) Biodiversity conservation in cocoa production landscapes: an overview. Biodivers Conserv 16:2237–2244CrossRefGoogle Scholar
  108. Schroth G, Krauss U, Gasparotto L, Aguilar JAD, Vohland K (2000) Pests and diseases in agroforestry systems of the humid tropics. Agrofor Syst 50:199–241CrossRefGoogle Scholar
  109. Schroth G, Bede L, Paiva A, Cassano C, Amorim A, Faria D, Mariano-Neto E, Martini AZ, Sambuichi RR, Lôbo R (2013) Contribution of agroforests to landscape carbon storage. Mitig Adapt Strat Glob Chang 1–16Google Scholar
  110. Schroth G, Jeusset A, Gomes AS, Florence C, Coelho N, Faria D, Läderach P (2014) Climate friendliness of cocoa agroforests is compatible with productivity increase. Mitig Adapt Strat Glob Chang 1–14Google Scholar
  111. Schulz J (2011) Imitating natural ecosystems through successional agroforestry for the regeneration of degraded lands - a case study of smallholder agriculture in northeastern Brazil. In: Rossi E, Montagnini F, Francesconi W (eds) Agroforestry as a tool for landscape restoration. Nova, New YorkGoogle Scholar
  112. Schulz B, Becker B, Götsch E (1994) Indigenous Knowledge in a “modern” sustainable agroforestry system – a case study from Brazil. Agrofor Syst 25:59–69CrossRefGoogle Scholar
  113. Seiler C, Hutjes RWA, Kabat P (2013) Likely ranges of climate change in Bolivia. J Appl Meteorol Climatol 52:1303–1317CrossRefGoogle Scholar
  114. Smith Dumont E, Gnahoua GM, Ohouo L, Sinclair FL, Vaast P (2014) Farmers in Côte d’Ivoire value integrating tree diversity in cocoa for the provision of ecosystem services. Agrofor Syst 88:1047–1066CrossRefGoogle Scholar
  115. Somarriba E, Cerda R, Orozco L, Cifuentes M, Davila H, Espin T, Mavisoy H, Avila G, Alvarado E, Poveda V, Astorga C, Say E, Deheuvels O (2013) Carbon stocks and cocoa yields in agroforestry systems of Central America. Agr Ecosyst Environ 173:46–57CrossRefGoogle Scholar
  116. Somarriba E, Suárez-Islas A, Calero-Borge W, Villota A, Castillo C, Vílchez S, Deheuvels O, Cerda R (2014) Cocoa–timber agroforestry systems: Theobroma cacao–Cordia alliodora in Central America. Agrofor Syst 88:1001–1019CrossRefGoogle Scholar
  117. Sonwa DJ, Nkongmeneck BA, Weise SF, Tchatat M, Adesina AA, Janssens MJJ (2007) Diversity of plants in cocoa agroforests in the humid forest zone of Southern Cameroon. Biodivers Conserv 16:2385–2400CrossRefGoogle Scholar
  118. Sonwa D, Weise S, Schroth G, Janssens MJ, Howard-Yana S (2014) Plant diversity management in cocoa agroforestry systems in West and Central Africa—effects of markets and household needs. Agrofor Syst 88:1021–1034CrossRefGoogle Scholar
  119. Sood KK, Mitchell CP (2006) Importance of human psychological variables in designing socially acceptable agroforestry systems. Forests Trees Livelihoods 16:127–137CrossRefGoogle Scholar
  120. Soto-Pinto L, Anzueto M, Mendoza J, Jimenez Ferrer G, De Jong B (2010) Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor Syst 78:39–51CrossRefGoogle Scholar
  121. Sperber CF, Nakayama K, Valverde MJ, Neves FD (2004) Tree species richness and density affect parasitoid diversity in cacao agroforestry. Basic Appl Ecol 5:241–251CrossRefGoogle Scholar
  122. Staver C, Guharay F, Monterroso D, Muschler RG (2001) Designing pest-suppressive multistrata perennial crop systems: shade-grown coffee in Central America. Agrofor Syst 53:151–170CrossRefGoogle Scholar
  123. Steffan-Dewenter I, Kessler M, Barkmann J, Bos MM, Buchori D, Erasmi S, Faust H, Gerold G, Glenk K, Gradstein SR, Guhardja E, Harteveld M, Hertel D, Höhn P, Kappas M, Köhler S, Leuschner C, Maertens M, Marggraf R, Migge-Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A, Tjitrosoedirdjo SS, Tjitrosoemito S, Twele A, Weber R, Woltmann L, Zeller M, Tscharntke T (2007) Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. Proc Natl Acad Sci 104:4973–4978PubMedCentralCrossRefPubMedGoogle Scholar
  124. TCC (2010) Cocoa barometer 2010. Tropical commodity coalition for sustainable tea, coffee and cocoa, 24pGoogle Scholar
  125. Thorlakson T, Neufeldt H (2012) Reducing subsistence farmers’ vulnerability to climate change: evaluating the potential contributions of agroforestry in western Kenya. Agric Food Secur 1:1–13 (2 October 2012)CrossRefGoogle Scholar
  126. Todt B (2010) Soil fertility in monoculture and succesional agroforestry land use systems for citrus sinensis in Alto Beni, Bolivia. Georg-August-Universität, DiplomGoogle Scholar
  127. Todt B, Kühne RF, Gerold G (2009) Evaluation of soil fertility in monoculture and succesional agroforestry land use systems for citrus sinensis, in Alto Beni, Bolivia. Tropentag conference, Hamburg, 6–8 Oct 2009Google Scholar
  128. Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Hölscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wanger TC (2011) Multifunctional shade-tree management in tropical agroforestry landscapes – a review. J Appl Ecol 48:619–629CrossRefGoogle Scholar
  129. Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59CrossRefGoogle Scholar
  130. Vaast P, Somarriba E (2014) Trade-offs between crop intensification and ecosystem services: the role of agroforestry in cocoa cultivation. Agrofor Syst 88:947–956CrossRefGoogle Scholar
  131. Verchot LV, Noordwijk MV, Kandji S, Tomich T, Ong C, Albrecht A, Mackensen J, Bantilan C, Anupama KV, Palm C (2007) Climate change: linking adaptation and mitigation through agroforestry. Mitig Adapt Strat Glob Chang 12:901–918CrossRefGoogle Scholar
  132. Vieira DLM, Holl KD, Peneireiro FM (2009) Agro-successional restoration as a strategy to facilitate tropical forest recovery. Restoration Ecol 17:451–459CrossRefGoogle Scholar
  133. Wood GAR, Lass RA (2001) Cocoa. Blackwell Science, OxfordCrossRefGoogle Scholar
  134. World Bank (2009) Bolivia country note on climate change aspects in agriculture. World Bank, Washington, DCGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christian Andres
    • 1
    • 2
    Email author
  • Hermann Comoé
    • 3
  • Anna Beerli
    • 3
  • Monika Schneider
    • 1
  • Stephan Rist
    • 4
  • Johanna Jacobi
    • 4
    • 5
  1. 1.Department of International CooperationResearch Institute of Organic Agriculture (FiBL)FrickSwitzerland
  2. 2.ETH Zurich, Department of Environmental Systems ScienceInstitute of Agricultural Sciences, Sustainable Agro-ecosystems GroupZurichSwitzerland
  3. 3.ETH Zurich, Department of Environmental Systems ScienceInstitute for Environmental Decisions, Agricultural Economics GroupZurichSwitzerland
  4. 4.Centre for Development and EnvironmentUniversity of BernBernSwitzerland
  5. 5.Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyUSA

Personalised recommendations