A Simple Model of the Hand for the Analysis of Object Exploration

  • Vonne van PolanenEmail author
  • Wouter M. Bergmann Tiest
  • Astrid M. L. Kappers
Part of the Springer Series on Touch and Haptic Systems book series (SSTHS)


When hand motions in haptic exploration are investigated, the measurement methods used might actually restrict the movements or the perception. The perception might be reduced because the skin is covered, e.g. with a data glove. Also, the range of possible motions might be limited, e.g. by wired sensors. Here, a model of the hand is proposed that is calculated from data obtained from a small number of sensors (6). The palmar side of the hand is not covered by sensors or tape, leaving the skin free for cutaneous perception. The hand is then modeled as 16 rigid 3D segments, with a hand palm and 5 individual fingers with 3 phalanges each. This model can be used for movement analysis in object exploration and contact point analysis. A validation experiment of an object manipulation task and a contact analysis showed good qualitative agreement of the model with the control measurements. The calculations, assumptions and limitations of the model are discussed in comparison with other methods.


Joint Position Proximal Phalanx Control Sensor Haptic Perception Middle Phalanx 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the European Commission with the Collaborative Project no. 248587, “THE Hand Embodied”, within the FP7-ICT-2009-4-2-1 program “Cognitive Systems and Robotics”.


  1. 1.
    Aristidou A, Lasenby J (2010) Motion capture with constrained inverse kinematics for real-time hand tracking. In: 4th International symposium on communications, control, and signal processing, ISCCSP 2010, IEEE, pp 1–5Google Scholar
  2. 2.
    Aristidou A, Lasenby J (2011) FABRIK: A fast, iterative solver for the Inverse Kinematics problem. Graphical Models 73(5):243–260CrossRefGoogle Scholar
  3. 3.
    Braido P, Zhang X (2004) Quantitative analysis of finger motion coordination in hand manipulative and gestic acts. Hum Mov Sci 22(6):661–678CrossRefGoogle Scholar
  4. 4.
    Bullock IM, Borras J, Dollar AM (2012) Assessing assumptions in kinematic hand models: A review. In: Proceedings of the IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics, IEEE, pp 139–146Google Scholar
  5. 5.
    Cerveri P, De Momi E, Lopomo N, Baud-Bovy G, Barros RML, Ferrigno G (2007) Finger kinematic modeling and real-time hand motion estimation. Ann Biomed Eng 35(11):1989–2002CrossRefGoogle Scholar
  6. 6.
    Dipietro L, Sabatini AM, Dario P (2008) A survey of glove-based systems and their applications. IEEE Trans Syst Man Cybern Part C: Appl Rev 38(4):461–482CrossRefGoogle Scholar
  7. 7.
    Fu Q, Santello M (2010) Tracking whole hand kinematics using extended Kalman filter. In: 2010 Annual international conference of the IEEE engineering in medicine and biology society, EMBC’10, pp 4606–4609, doi: 10.1109/IEMBS.2010.5626513
  8. 8.
    Gabiccini M, Stillfried G, Marino H, Bianchi M (2013) A data-driven kinematic model of the human hand with soft-tissue artifact compensation mechanism for grasp synergy analysis. In: IEEE International conference on intelligent robots and systems, pp 3738–3745, doi: 10.1109/IROS.2013.6696890
  9. 9.
    Gustus A, Stillfried G, Visser J, Jörntell H, van der Smagt P (2012) Human hand modelling: kinematics, dynamics, applications. Biol Cybernet 106(11–12):741–755CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Jansen SEM, Bergmann Tiest WM, Kappers AML (2015) Haptic exploratory behavior during object discrimination: A novel automatic annotation method. Plos One 10(2):e0117,017, doi: 10.1371/journal.pone.0117017 Google Scholar
  11. 11.
    Jansen SEM, Bergmann Tiest WM, Kappers AML (2013) Identifying haptic exploratory procedures by analyzing hand dynamics and contact force. IEEE Trans Haptics 6(4):464–472CrossRefGoogle Scholar
  12. 12.
    Kahrimanovic M, Bergmann Tiest WM, Kappers AML (2011) Discrimination thresholds for haptic perception of volume, surface area, and weight. Atten Percept Psychophys 73(8):2649–2656CrossRefGoogle Scholar
  13. 13.
    Kalagher H, Jones SS (2011) Young children’s haptic exploratory procedures. J Exp Child Psychol 110(4):592–602CrossRefGoogle Scholar
  14. 14.
    Klatzky RL, Lederman SJ, Reed C (1989) Haptic integration of object properties—texture, hardness, and planar contour. J Exp Psychol Hum Percept Perform 15(1):45–57CrossRefGoogle Scholar
  15. 15.
    Lederman SJ, Klatzky RL (1987) Hand movements—a window into haptic object recognition. Cogn Psychol 19(3):342–368CrossRefGoogle Scholar
  16. 16.
    Lien CC, Huang CL (1998) Model-based articulated hand motion tracking for gesture recognition. Image Vision Comput 16(2):121–134CrossRefGoogle Scholar
  17. 17.
    Liu H (2011) Exploring human hand capabilities into embedded multifingered object manipulation. IEEE Trans Ind Inform 7(3):389–398CrossRefGoogle Scholar
  18. 18.
    Miyata N, Kouchi M, Hurihara T, Mochimaru M (2004) Modeling of human hand link structure from optical motion capture data. Intell Robots Syst 3:2129–2135Google Scholar
  19. 19.
    Nataraj R, Li ZMM (2013) Robust identification of three-dimensional thumb and index finger kinematics with a minimal set of markers. J Biomech Eng 135(9):91002Google Scholar
  20. 20.
    Overvliet KE, Smeets JBJ, Brenner E (2007) Haptic search with finger movements: using more fingers does not necessarily reduce search times. Exp Brain Res 182(3):427–434CrossRefGoogle Scholar
  21. 21.
    Plaisier MA, Bergmann Tiest WM, Kappers AML (2008) Haptic pop-out in a hand sweep. Acta Psychol 128(2):368–377CrossRefGoogle Scholar
  22. 22.
    Plaisier MA, Bergmann Tiest WM, Kappers AML (2009a) One, two, three, many—Subitizing in active touch. Acta Psychol 131(2):163–170CrossRefGoogle Scholar
  23. 23.
    Plaisier MA, Bergmann Tiest WM, Kappers AML (2009b) Salient features in 3-D haptic shape perception. Atten Percept Psychophys 71(2):421–430CrossRefGoogle Scholar
  24. 24.
    Sancho-Bru JL, Mora MC, León BE, Pérez-González A, Iserte JL, Morales A (2014) Grasp modelling with a biomechanical model of the hand. Comput Methods Biomech Biomed Eng 17(4):297–310CrossRefGoogle Scholar
  25. 25.
    Smith AM, Gosselin G, Houde B (2002) Deployment of fingertip forces in tactile exploration. Exp Brain Res 147(2):209–218CrossRefGoogle Scholar
  26. 26.
    Thakur PH, Bastian AJ, Hsiao SS (2008) Multidigit movement synergies of the human hand in an unconstrained haptic exploration task. J Neurosci 28(6):1271–1281CrossRefGoogle Scholar
  27. 27.
    Todorov E (2007) Probabilistic inference of multijoint movements, skeletal parameters and marker attachments from diverse motion capture data. IEEE Trans Biomed Eng 54(11):1927–1939. doi: 10.1109/TBME.2007.903521 CrossRefGoogle Scholar
  28. 28.
    van Polanen V, Bergmann Tiest WM, Kappers AML (2012a) Haptic pop-out of movable stimuli. Atten Percept Psychophys 74(1):204–215CrossRefGoogle Scholar
  29. 29.
    van Polanen V, Bergmann Tiest WM, Kappers AML (2014) Target contact and exploration strategies in haptic search. Sci Reports 4:6254. doi: 10.1038/srep06254 CrossRefGoogle Scholar
  30. 30.
    van Polanen V, Bergmann Tiest WM, Kappers AML (2012b) Haptic search for hard and soft spheres. PLOS ONE 7(10):e45298Google Scholar
  31. 31.
    Withagen A, Kappers AML, Vervloed MPJ, Knoors H, Verhoeven L (2013) The use of exploratory procedures by blind and sighted adults and children. Atten Percept Psychophys 75(7):1451–1464CrossRefGoogle Scholar
  32. 32.
    Wu YWY, Huang T (1999) Capturing articulated human hand motion: a divide-and-conquer approach. In: Proceedings of the seventh IEEE International conference on computer vision, IEEE 1:606–611Google Scholar
  33. 33.
    Zhang X, Lee SW, Braido P (2003) Determining finger segmental centers of rotation in flexion-extension based on surface marker measurement. J Biomech 36(8):1097–1102CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vonne van Polanen
    • 1
    Email author
  • Wouter M. Bergmann Tiest
    • 2
  • Astrid M. L. Kappers
    • 2
  1. 1.Department of Kinesiology, KU LeuvenMovement Control and Neuroplasticity Research GroupLeuvenBelgium
  2. 2.Department of Human Movement SciencesMOVE Research Institute, Vrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations