Skip to main content

Incremental Learning of Muscle Synergies: From Calibration to Interaction

  • Chapter
  • First Online:
Human and Robot Hands

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

Abstract

In the previous chapter it has been shown how sEMG gathered from only two loci of muscular activity with opposite mechanical actions can be used to control the synergy-inspired robotic hand described in Chap. 8. Here, the problem of simplifying the control of a multi-DOF, multi-DOA mechatronic system—more specifically a prosthetic hand—is tackled from the opposite perspective, i.e. by leveraging the information contained in the sEMG gathered from multiple sources of activity. Natural, reliable and precise control of a dexterous hand prosthesis is a key ingredient to the restoration of a missing hand’s functions, to the best extent allowed for by the current technology. However, this kind of control, based upon machine learning applied to synergistic muscle activation patterns, is still not reliable enough to be used in the clinics. In this chapter we propose to use incremental machine learning to improve the stability and reliability of natural prosthetic control. Incremental learning enforces a true, endless adaptation of the prosthesis to the subject, the environment, the objects to be manipulated; and it allows for the adaptation of the subject to the prosthesis in the course of time, leading to the exploitation of reciprocal learning. If proven successful in the large, this idea will prepare the shift from prostheses, which need to be calibrated, to prostheses that interact with human beings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As of today, the only commercially available machine-learning-based myocontrol system is manufactured by Coapt LLC (www.coaptengineering.com) and no statistics on its effectiveness are available.

  2. 2.

    At least according to the standard piano-playing technique as told in most modern musical methods.

  3. 3.

    Notice that from the point of view of the clinician, this term represents a bizarre semantic twist, since normally it is the human subject which must be “trained” to use a prosthesis and not vice-versa!

  4. 4.

    See www.touchbionics.com.

  5. 5.

    Namely, MyoBock 13E200, see www.ottobock.com.

  6. 6.

    This inspirational metaphor is due to Peter J. Kyberd in a personal communication with the author of this chapter.

References

  1. Artemiadis PK, Kyriakopoulos KJ (2011) A switching regime model for the EMG-based control of a robot arm. IEEE Trans Syst Man Cybern Part B Cybern 41(1):53–63

    Article  Google Scholar 

  2. Aszmann OC, Roche AD, Salminger S, Paternostro-Sluga T, Herceg M, Sturma A, Hofer C, Farina D (2015) Bionic reconstruction to restore hand function after brachial plexus injury: a case series of three patients. Lancet 9983:2783–2789

    Google Scholar 

  3. Bernshtein NA (1967) The coordination and regulation of movements. Pergamon Press, Oxford

    Google Scholar 

  4. Bicchi A, Gabiccini M, Santello M (2011) Modelling natural and artificial hands with synergies. Philos Trans R Soc Lond Ser B Biol Sci 366(1581):3153–3161

    Google Scholar 

  5. Biddiss E, Chau T (2007) Upper-limb prosthetics: critical factors in device abandonment. Am J Phys Med Rehabil 86(12):977–987

    Google Scholar 

  6. Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Haussler D (ed) Proceedings of the 5th annual ACM workshop on computational learning theory. ACM press, pp 144–152

    Google Scholar 

  7. Castellini C (2014) State of the art and perspectives of ultrasound imaging as a human-machine interface. In: Artemiadis, P (ed) Neuro-robotics: from brain-machine interfaces to rehabilitation robotics. Trends in augmentation of human performance, vol 2. Springer, Netherlands, pp 37–58. doi:10.1007/978-94-017-8932-5

    Google Scholar 

  8. Castellini C, Artemiadis P, Wininger M, Ajoudani A, Alimusaj M, Bicchi A, Caputo B, Craelius W, Dosen S, Englehart K, Farina D, Gijsberts A, Godfrey S, Hargrove L, Ison M, Kuiken T, Markovic M, Pilarski P, Rupp R, Scheme E (2014) Proceedings of the first workshop on peripheral machine interfaces: going beyond traditional surface electromyography. Front Neurorobot 8:22. doi:10.3389/fnbot.2014.00022

  9. Castellini C, Fiorilla AE, Sandini G (2009) Multi-subject/daily-life activity EMG-based control of mechanical hands. J Neuroeng Rehabil 6(41):12. doi:10.1186/1743-0003-6-41

  10. Castellini C, Gruppioni E, Davalli A, Sandini G (2009) Fine detection of grasp force and posture by amputees via surface electromyography. J Physiol (Paris) 103(3–5):255–262. doi:10.1016/j.jphysparis.2009.08.008

    Google Scholar 

  11. Castellini C, Hertkorn K, Sagardia M, Sierra González D, Nowak M (2014) A virtual piano-playing environment for rehabilitation based upon ultrasound imaging. In: Proceedings of BioRob—IEEE international conference on biomedical robotics and biomechatronics, pp 548–554. doi:10.1109/BIOROB.2014.6913835

  12. Castellini C, Passig G (2011) Ultrasound image features of the wrist are linearly related to finger positions. In: Proceedings of IROS—international conference on intelligent robots and systems, pp 2108–2114. doi:10.1109/IROS.2011.6048503

  13. Castellini C, Passig G, Zarka E (2012) Using ultrasound images of the forearm to predict finger positions. IEEE Trans Neural Syst Rehabil Eng 20(6):788–797. doi:10.1109/TNSRE.2012.2207916

    Google Scholar 

  14. Castellini C, van der Smagt P (2013) Evidence of muscle synergies during human grasping. Biol Cybern 107(2):233–245. doi:10.1007/s00422-013-0548-4

    Google Scholar 

  15. d’Avella A (2009) Muscle synergies. In: Binder M, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience. Springer, Berlin, pp 2509–2512

    Google Scholar 

  16. D’avella A, Lacquaniti F (2013) Control of reaching movements by muscle synergy combinations. Front Comput Neurosci 7(42). doi:10.3389/fncom.2013.00042

  17. Dekel O, Shalev-Shwartz S, Singer Y (2008) The forgetron: a kernel-based perceptron on a budget. SIAM J Comput 37(5):1342–1372. doi:10.1137/060666998

    Google Scholar 

  18. Farina D, Jiang N, Rehbaum H, Holobar A, Graimann B, Dietl H, Aszmann O (2014) The extraction of neural information from surface EMG for the control of upper-limb prostheses: emerging avenues and challenges. IEEE Trans Neural Syst Rehabil Eng 22(4):797–809

    Google Scholar 

  19. Fougner A, Stavdahl Ø, Kyberd PJ, Losier YG, Parker PA (2012) Control of upper limb prostheses: terminology and proportional myoelectric control—a review. IEEE Trans Neural Syst Rehabil Eng 20(5):663–677

    Google Scholar 

  20. Gijsberts A, Bohra R, Sierra González D, Werner A, Nowak M, Caputo B, Roa M, Castellini C (2014) Stable myoelectric control of a hand prosthesis using non-linear incremental learning. Front Neurorobot 8(8). doi:10.3389/fnbot.2014.00008

  21. Gijsberts A, Metta G (2011) Incremental learning of robot dynamics using random features. In: IEEE international conference on robotics and automation, pp 951–956. doi:10.1109/ICRA.2011.5980191

  22. Guo JY, Zheng YP, Xie HB, Koo TK (2013) Towards the application of one-dimensional sonomyography for powered upper-limb prosthetic control using machine learning models. Prosthet Orthot Int 37(1):43–49

    Google Scholar 

  23. Hager WW (1989) Updating the inverse of a matrix. SIAM Rev 31:221–239. doi:10.1137/1031049

    Google Scholar 

  24. Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12:55–67

    Google Scholar 

  25. Ison M, Artemiadis P (2014) The role of muscle synergies in myoelectric control: trends and challenges for simultaneous multifunction control. J Neural Eng 11:051001

    Google Scholar 

  26. Jiang N, Došen S, Müller KR, Farina D (2012) Myoelectric control of artificial limbs: Is there a need to change focus? [in the spotlight]. IEEE Signal Process Mag 29(5):150–152. doi:10.1109/MSP.2012.2203480

    Google Scholar 

  27. Jiang N, Englehart K, Parker P (2009) Extracting simultaneous and proportional neural control information for multiple-dof prostheses from the surface electromyographic signal. IEEE Trans Biomed Eng 56(4):1070–1080. doi:10.1109/TBME.2008.2007967

    Google Scholar 

  28. Jiang N, Rehbaum H, Vujaklija I, Graimann B, Farina D (2013) Intuitive, online, simultaneous and proportional myoelectric control over two degrees of freedom in upper limb amputees. IEEE Trans Neural Syst Rehabil Eng 22(3):501–510. doi:10.1109/TNSRE.2013.2278411

    Google Scholar 

  29. Kõiva R, Hilsenbeck B, Castellini C (2013) Evaluating subsampling strategies for sEMG-based prediction of voluntary muscle contractions. In: Proceedings of ICORR—international conference on rehabilitation robotics, pp 1–7. doi:10.1109/ICORR.2013.6650492

  30. Kuiken TA, Li G, Lock BA (2009) Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. J Am Med Assoc 301(6):619–628

    Google Scholar 

  31. Kumar A (2003) Movement and Locomotion in Animals. Discovery Publishing Pvt Ltd., New Delhi

    Google Scholar 

  32. Latash M (2008) Synergy. Oxford University Press, New York

    Google Scholar 

  33. Marković M, Došen S, Cipriani C, Popović D, Farina D (2014) Stereovision and augmented reality for closed-loop control of grasping in hand prostheses. J Neural Eng 11:046001

    Google Scholar 

  34. Merletti R, Aventaggiato M, Botter A, Holobar A, Marateb H, Vieira T (2011) Advances in surface EMG: recent progress in detection and processing techniques. Crit Rev Biomed Eng 38(4):305–345

    Google Scholar 

  35. Merletti R, Botter A, Cescon C, Minetto M, Vieira T (2011) Advances in surface EMG: recent progress in clinical research applications. Crit Rev Biomed Eng 38(4):347–379

    Google Scholar 

  36. Merletti R, Botter A, Troiano A, Merlo E, Minetto M (2009) Technology and instrumentation for detection and conditioning of the surface electromyographic signal: state of the art. Clin Biomech 24:122–134

    Google Scholar 

  37. Micera S, Carpaneto J, Raspopović S (2010) Control of hand prostheses using peripheral information. IEEE Rev Biomed Eng 3:48–68

    Google Scholar 

  38. Muybridge E, Brown LS (1957) Animals in motion (Dover anatomy for artists). Dover Publications, New York

    Google Scholar 

  39. Netter FH (2006) Atlas der Anatomie des Menschen, 3rd edn. Thieme, Stuttgart

    Google Scholar 

  40. Nguyen-Tuong D, Seeger MW, Peters J (2009) Model learning with local Gaussian process regression. Adv Robot 23(15):2015–2034

    Google Scholar 

  41. Nielsen JLG, Holmgård S, Jiang N, Englehart KB, Farina D, Parker PA (2011) Simultaneous and proportional force estimation for multifunction myoelectric prostheses using mirrored bilateral training. IEEE Trans Biomed Eng 58(3):681–688

    Google Scholar 

  42. Ortiz-Catalan M, Sander N, Kristoffersen MB, Håkansson B, Brånemark R (2014) Treatment of phantom limb pain (PLP) based on augmented reality and gaming controlled by myoelectric pattern recognition: a case study of a chronic PLP patient. Front Neurosci 8:24

    Google Scholar 

  43. Ott C, Eiberger O, Roa M, Albu-Schäffer A (2012) Hardware and control concept for an experimental bipedal robot with joint torque sensors. J Robot Soc Jpn 30(4):378–382

    Google Scholar 

  44. Peerdeman B, Boere D, Witteveen H., in ‘t Veld, RH, Hermens H, Stramigioli S, Rietman H, Veltink P, Misra S (2011) Myoelectric forearm prostheses: state of the art from a user-centered perspective. J Rehabil Res Dev 48(6):719–738

    Google Scholar 

  45. Powell MA, Kaliki RR, Thakor NV (2014) User training for pattern recognition-based myoelectric prostheses: improving phantom limb movement consistency and distinguishability. IEEE Trans Neural Syst Rehabil Eng 22(3):522–532

    Google Scholar 

  46. Powell MA, Thakor NV (2013) A training strategy for learning pattern recognition control for myoelectric prostheses. J Prosthet Orthot 25(1):30–41

    Google Scholar 

  47. Radmand A, Scheme E, Englehart K (2014) High-resolution muscle pressure mapping for upper-limb prosthetic control. In: Proceedings of MEC—myoelectric control symposium, pp 193–197

    Google Scholar 

  48. Rahimi A, Recht B (2008) Random features for large-scale kernel machines. Adv Neural Inf Process Syst 20:1177–1184

    Google Scholar 

  49. Rahimi A, Recht B (2008) Uniform approximation of functions with random bases. In: Allerton conference on communication control and computing (Allerton08), pp 555–561

    Google Scholar 

  50. Ravindra V, Castellini C (2014) A comparative analysis of three non-invasive human-machine interfaces for the disabled. Front Neurorobot 8(24). doi:10.3389/fnbot.2014.00024

  51. Sagardia M, Hertkorn K, Sierra González D, Castellini C (2014) Ultrapiano: a novel human-machine interface applied to virtual reality. In: Proceedings of ICRA—international conference on robotics and automation, p 2089. doi:10.1109/ICRA.2014.6907142

  52. Santello M, Baud-Bovy G, Jörntell H (2013) Neural bases of hand synergies. Front Comput Neurosci 7:23

    Google Scholar 

  53. Santello M, Flanders M, Soechting JF (1998) Postural hand synergies for tool use. J Neurosci 18(23):10105–10115

    Google Scholar 

  54. Santello M, Flanders M, Soechting JF (2002) Patterns of hand motion during grasping and the influence of sensory guidance. Neuroscience 22(4):1426–1435

    Google Scholar 

  55. Scheme E, Englehart K (2011) Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J Rehabil Res Dev 48(6):643–660

    Google Scholar 

  56. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, Cambridge

    Google Scholar 

  57. Sierra González D, Castellini C (2013) A realistic implementation of ultrasound imaging as a human-machine interface for upper-limb amputees. Front Neurorobot 7(17). doi:10.3389/fnbot.2013.00017

  58. Tresch MC, Jarc A (2009) The case for and against muscle synergies. Curr Opin Neurobiol 19(6):601–607

    Google Scholar 

  59. Vapnik VN (1998) Statistical learning theory. Wiley, New York

    Google Scholar 

  60. Wimböck T, Jahn B, Hirzinger G (2011) Synergy level impedance control for multi-fingered hands. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp 973–979

    Google Scholar 

  61. Yungher D, Wininger M, Baar W, Craelius W, Threlkeld A (2011) Surface muscle pressure as a means of active and passive behavior of muscles during gait. Med Eng Phys 33:464–471

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Swiss National Science Foundation Sinergia project #132700 NinaPro (Non-Invasive Adaptive Hand Prosthetics) and by the FP7 project The Hand Embodied (FP7-248587).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Castellini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Castellini, C. (2016). Incremental Learning of Muscle Synergies: From Calibration to Interaction. In: Bianchi, M., Moscatelli, A. (eds) Human and Robot Hands. Springer Series on Touch and Haptic Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-26706-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26706-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26705-0

  • Online ISBN: 978-3-319-26706-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics