Skip to main content

Abstract

The wavelet transform is one of the widely used transforms that proved to be very powerful in many applications, as it has strong localization ability in both frequency and space. In this paper, the 3D Stationary Wavelet Transform (SWT) is combined with a Local Binary Pattern (LBP) histogram to represent and describe the human actions in video sequences. A global representation is obtained and described using Hu invariant moments and a weighted LBP histogram is presented to describe the local structures in the wavelet representation. The directional and multi-scale information encoded in the wavelet coefficients is utilized to obtain a robust description that combine global and local descriptions in a unified feature vector. This unified vector is used to train a standard classifier. The performance of the proposed descriptor is verified using the KTH dataset and achieved high accuracy compared to existing state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahad, M., Tan, J., Kim, H., Ishikawa, S.: Motion history image: its variants and applications. Mach. Vis. Appl. 23, 255–281 (2012)

    Article  Google Scholar 

  2. Al-Berry, M.N., Ebied, H.M., Hussein, A.S., Tolba, M.F.: Human action recognition via multi-scale 3D stationary wavelet analysis. In: Hybrid Intelligent Systems 2014 (HIS’14). Kuwait (2014)

    Google Scholar 

  3. Al-berry, M.N., Salem, M.A.-M., Ebeid, H.M., Hussein, A.S., Tolba, M.F.: Action recognition using stationary wavelet-based motion images. In: IEEE conference o n Intelligent systems 14, pp. 743–753. Warasaw, Poland: Springer International Publishing (2014)

    Google Scholar 

  4. Al-Berry, M.N., Salem, M.A.-M., Hussein, A.S., Tolba, M.F.: Spatio-Temporal motion detection for intelligent surveillance applications. Int. J. Comput. Methods, 11(1) (2014)

    Google Scholar 

  5. Al-Berry, M.N., Salem, M.A.-M., Mousher, H.E., Hussein, A.S., Tolba, M.F.: Directional stationary wavelet-based representation for human action classification. In: Advanced Machine Learning Technologies and Applications(AMLTA2014), pp. 309–320. Cairo: Springer International Publishing (2014)

    Google Scholar 

  6. Bradley, A.P.: Shift-invariance in the discrete wavelet transform. In: Proceeding of VIIth Digital Image Computing: Techniques and Applications, 1, pp. 29–38. Sydney (2003)

    Google Scholar 

  7. Bregonzio, M., Xiang, T., Gong, S.: Fusing appearance and distribution information of interest points for action recognition. Pattern Recogn. 45, 1220–1234 (2012)

    Article  Google Scholar 

  8. Daubechies, I.: Recent results in wavelet applications. J. Electron. Imaging 7(4), 719–724 (1998)

    Article  MathSciNet  Google Scholar 

  9. Daubechies, I.: Ten Lectures on Wavelets. Industrial and Applied Mathematics Publishing Company, Philadelphia (1992)

    Google Scholar 

  10. Fadili, J., Starck J.L.: Numerical issues when using wavelets. In: Robert, M.A. (ed.) Encyclopedia of Complexity and Systems Science, vol. 3, pp. 6352–6368. Springer, New York (2009)

    Google Scholar 

  11. Fowler, J.E.: The redundant discrete wavelet transform and additive noise. Signal Process. Lett. 12(9), 629–632 (2005)

    Article  Google Scholar 

  12. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Printice Hall, Upper Saddle River (2008)

    Google Scholar 

  13. Gupta, J.P., Singh, N., Dixit, P., Semwal, V.B., Dubey, S.R.: Human activity recognition using gait pattern. Int. J. Comput. Vision Image Process. 3(3), 31–53 (2013)

    Article  Google Scholar 

  14. Hu, M.-K.: Visual pattern recognition by moment invariants. IEEE Trans. Inf. Theory 8(2), 179–187 (1962)

    Article  MATH  Google Scholar 

  15. Kong, Y., Zhang, X., Hu, W., Jia, Y.: Adaptive learning codebook for action recognition. Pattern Recogn. Lett. 32, 1178–1186 (2011)

    Article  Google Scholar 

  16. Liu, S., Liu, J., Zhang, T., Lu, H.: Human action recognition in videos using hybrid features. In: Advances in Multimedia Modeling, Lecture Notes in Computer Science, vol. 5916, pp. 411–421 (2010)

    Google Scholar 

  17. Mallat, S., Hwang, W.: Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory 38(2), 617–643 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nanni, L., Barhnam, S., Lumini, A.: Combining different local binary pattern variants to boost performance. Expert Syst. Appl. 38, 6209–6216 (2011)

    Article  Google Scholar 

  19. Pietikainen, M.: Computer vision using local binary patterns, Computational Imaging and Vision, vol. 40. Springer, Berlin (2011)

    Google Scholar 

  20. Poppe, R.: A survey on vision-based human action recognition. Image Vis. Comput. 28, 976–990 (2010)

    Article  Google Scholar 

  21. Rapantzikos, K., Tsapatsoulis, N., Avrithis, Y., Kollias, S.: Spatiotemporal saliency for video classification. Sig. Process. Image Commun. 24, 557–571 (2009)

    Article  Google Scholar 

  22. Salem, M.: Multiresolution image segmentation. Ph.D. Thesis, Department of Computer Science, Humboldt-Universitaet zu Berlin. Berlin, Germany (2008)

    Google Scholar 

  23. Schüldt, C., Laptev, I., Caputo, B. Recognizing human actions: a local SVM approach. In: International Conference on Pattern Recognition (ICPR2004). vol. 3, pp. 32–36. IEEE (2004)

    Google Scholar 

  24. Shao, L., Gao, R., Liu, Y., Zhang, H.: Transform based spatio-temporal descriptors for human action recognition. Neurocomputing 74, 962–973 (2011)

    Article  Google Scholar 

  25. Sharma, A., Kumar, D.K. Moments and wavelets for classification of human gestures represented by spatio-temporal templates, pp. 215–226 (2004)

    Google Scholar 

  26. Sharma, A., Kumar, D.K., Kumar, S., McLachlan, N.: Wavelet directional histograms for classification of human gestures represented by spatio-temporal templates. In: 10th International Multimedia Modeling Conference MMM’04, pp. 57–63. IEEE (2004)

    Google Scholar 

  27. Siddiqi, M.H., Ali, R., Rana, M.S.,Hong, E.-K., Kim, E.s., Lee, S.: Video-based human activity recognition using multilevel wavelet decomposition and stepwise linear discriminant analysis. Sensors 14(4), 6370–6392 (2014)

    Google Scholar 

  28. Song, K.-C., Yan, Y.-H., Chen, W.-H., Zhang, X.: Research and perspective on local binary pattern. Acta Automatica Sinica 39(6) (2013)

    Google Scholar 

  29. Stark, J.-L., Fadili, J., Murtagh, F.: The undecimated wavelet decomposition and its reconstruction. IEEE Trans. Image Process. 16(2) (2007)

    Google Scholar 

  30. Zhao, Y., Jia, W., Hu, R.-X., Min, H.: Completed robust local binary pattern for texture classification. Neurocomputing 106, 68–76 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam N. Al-Berry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Al-Berry, M.N., Salem, M.AM., Ebeid, H.M., Hussein, A.S., Tolba, M.F. (2016). Action Classification Using Weighted Directional Wavelet LBP Histograms. In: Gaber, T., Hassanien, A., El-Bendary, N., Dey, N. (eds) The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015, Beni Suef, Egypt. Advances in Intelligent Systems and Computing, vol 407. Springer, Cham. https://doi.org/10.1007/978-3-319-26690-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26690-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26688-6

  • Online ISBN: 978-3-319-26690-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics