Skip to main content

An Optimization-Based Framework for Impulsive Control Systems

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 464))

Abstract

This chapter concerns a discrete-time sampling state feedback control optimizing framework for dynamic impulsive systems. This class of control systems differs from the conventional ones in that the control space is enlarged to contain measures and, thus, the associated trajectories are merely of bounded variation. In other words, it may well exhibit jumps. We adopt the most recent impulsive control solution concept that pertains to important classes of engineering systems and, in this context, present impulsive control theory results on invariance, stability , and sampled data trajectories having in mind the optimization-based framework that relies on an MPC-like scheme. The stability of the proposed MPC scheme is addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This problem can be solved by using direct methods or indirect methods which take advantage of necessary conditions of optimality, possibly, in the form of a maximum principle such as the ones proved in [9, 10].

  2. 2.

    Here, we consider a mathematical abstraction of a scheme whose physical realization may involve sampling “during” the “atomic activities” at a frequency several orders of magnitude higher than the one when the trajectory is evolving continuously.

References

  1. M. Alamir, Stabilization of Nonlinear Systems Using Receding-Horizon Control Schemes: A Parameterized Approach for Fast System, Lecture Notes in Control and Information Sciences (Springer, London, 2006)

    MATH  Google Scholar 

  2. M.R. Almassalkhi, I. Hiskens, Model-predictive cascade mitigation in electric power systems with storage and renewables—part I: theory and implementation. IEEE Trans. Power Syst. 30(1), 67–77 (2015)

    Article  Google Scholar 

  3. A.V. Arutyunov, Optimality Conditions: Abnormal and Degenerate Problems (Kluwer Academic Publishers, London, 2000)

    Book  MATH  Google Scholar 

  4. A.V. Arutyunov, V. Dykhta, F.L. Pereira, Necessary conditions for impulsive nonlinear optimal control problems without a priori normality assumptions. J. Optim. Theory Appl. 124(1), 55–77 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. A.V. Arutyunov, D. Yu. Karamzin, F.L. Pereira, A nondegenerate maximum principle for the impulse control problem with state constraints. SIAM J. Control Optim. 43(5), 1812–1843 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. A.V. Arutyunov, D. Yu. Karamzin, F.L. Pereira, On constrained impulsive control problems. J. Math. Sci. 165(6), 654–688 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. A.V. Arutyunov, D. Yu. Karamzin, F.L. Pereira, Pontryagin’s maximum principle for optimal impulsive control problems. Dokl. Math. 81(3), 418–421 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. A.V. Arutyunov, D. Yu. Karamzin, F.L. Pereira, On a generalization of the impulsive control concept: controlling system jumps. Discret. Contin. Dyn. Syst 29(2), 403–415 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. A.V. Arutyunov, D. Yu. Karamzin, F.L. Pereira, Pontryagin’s maximum principle for constrained impulsive control problems. Nonlinear Anal., Theory, Meth. Appl. 75(3), 1045–1057 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. A.V. Arutyunov, D. Yu. Karamzin, F.L. Pereira, State constraints in impulsive control problems: Gamkrelidze-like conditions of optimality. J. Optim. Theory Appl. 166(2), 440–459 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. A.V. Arutyunov, D. Yu. Karamzin, F.L. Pereira, G.N. Silva, Investigation of regularity conditions in optimal control problems with geometric mixed constraints. Optim.: A J. Math. Progr. Oper. Res. 48(7), 1–22 (2015). doi:10.1080/02331934.2015.1014478

    MATH  Google Scholar 

  12. J.-P. Aubin, Impulse Differential Equations and Hybrid Systems: A Viability Approach, Lecture Notes (University of California, Berkeley, 2000)

    Google Scholar 

  13. J.-P. Aubin, J. Lygeros, M. Quincampoix, S. Sastry, N. Seube, Impulse differential inclusions: a viability approach to hybrid systems. IEEE Trans. Autom. Control 47(1), 2–20 (2002)

    Article  MathSciNet  Google Scholar 

  14. J. Baumeister: On optimal control of a fishery, in Proceedings of the NOLCOS’01—IFAC Symposium on Nonlinear Control System (2001)

    Google Scholar 

  15. J.T. Betts, Practical Methods for Optimal Control Using Nonlinear Programming (SIAM Publication, Philadelphia, 2001)

    MATH  Google Scholar 

  16. B. Brogliato, Nonsmooth Impact Mechanics: Models, Dynamics and Control, vol. 220, LNCIS (Springer, Berlin, 1996)

    MATH  Google Scholar 

  17. A.E. Bryson, Optimal control—1950 to 1985. IEEE Control Syst. 16(3), 26–33 (1996)

    Article  Google Scholar 

  18. H. Chen, F. Allgöwer. Nonlinear model predictive control schemes with guaranteed stability, in Nonlinear Model Based Process Control eds. by R. Berber, C. Kravaris (Kluwer, London, 1998)

    Google Scholar 

  19. H. Chen, F. Allgöwer, A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica 34(10), 1205–1217 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Clark, F.H. Clarke, G. Munro, The optimal exploitation of renewable stocks. J. Evol. Econom. 47, 25–47 (1979)

    MATH  Google Scholar 

  21. F.H. Clarke, Y.S. Ledyaev, R.J. Stern, P.R. Wolenski, Nonsmooth Analysis and Control Theory (Springer, New York, 1998)

    MATH  Google Scholar 

  22. V.A. Oliveira, F. Lobo Pereira, G.N. Silva, Invariance for impulsive control systems, in IEEE International Conference on Decision and Control. (Maui, EUA, 9–12 Dec 2003)

    Google Scholar 

  23. R. Findeisen, L. Imsland, F. Allgöwer, B. Foss, State and output feedback nonlinear model predictive control: an overview. Eur. J. Control 9, 190–206 (2003)

    Article  MATH  Google Scholar 

  24. R. Findeisen, L. Imsland, F. Allgöwer, B. Foss, Towards a sampled-data theory for nonlinear model predictive control, in New Trends in Nonlinear Dynamics and Control and their Applications, Lecture Notes in Control and Information Sciences, ed. by W. Kang, C. Borges, M. Xiao (Springer, Heidelberg, 2003), pp. 295–311. doi:10.1007/978-3-540-45056-6-19

    Google Scholar 

  25. F.A.C.C. Fontes, Discontinuous feedback stabilization using nonlinear model predictive controllers, in Proceedings of CDC 2000–39th IEEE Conference on Decision and Control (Sydney, Australia, December 2000)

    Google Scholar 

  26. F.A.C.C. Fontes, A general framework to design stabilizing nonlinear model predictive controllers. Syst. Control Lett. 42, 127–143 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. F.A.C.C. Fontes, Discontinuous feedbacks, discontinuous optimal controls, and continuous-time model predictive control. Int. J. Robust Nonlinear Control 13(3–4), 191–209 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. F.A.C.C. Fontes, L. Magni, A generalization of Barbalat’s lemma with applications to robust model predictive control, in Proceedings of Sixteenth International Symposium on Mathematical Theory of Networks and Systems (MTNS2004), Leuven, Belgium, 5–9 July 2004

    Google Scholar 

  29. F.A.C.C. Fontes, L. Magni, E. Gyurkovics, Sampled-data model predictive control for nonlinear time-varying systems: Stability and robustness, in Assessment and Future Directions of Nonlinear Model Predictive Control, ed. by F. Allgower, R. Findeisen, L. Biegler, Lecture Notes in Control and Information Systems, vol. 358 (Springer, 2007), pp. 115–129

    Google Scholar 

  30. F.A.C.C. Fontes, F.L. Pereira, Model predictive control of impulsive dynamical systems. Nonlinear Model Predict. Control 4, 305–310 (2012)

    Google Scholar 

  31. S.L. Fraga, F.L. Pereira, On the feedback control of impulsive dynamic systems, in Proceedings of the IEEE Conference on Decision and Control (2008), pp. 2135–2140

    Google Scholar 

  32. S.L. Fraga, F.L. Pereira, Hamilton–Jacobi–Bellman equation and feedback synthesis for impulsive control. IEEE Trans. Autom. Control 57(1), 244–249 (2012)

    Article  MathSciNet  Google Scholar 

  33. L. Grüne, D. Nesic, J. Pannek, Model predictive control for nonlinear sampled-data systems, in Proceedings of the Assessment and Future Directions of Nonlinear Model Predictive Control (NMPC05), eds. by R. Findeisen, F. Allgöwer, L. Biegler, Lecture Notes in Control and Information Sciences, vol. 358 (Springer, Heidelberg, 2007), pp. 105–113

    Google Scholar 

  34. D.Yu. Karamzin, V.A. Oliveira, F. Lobo Pereira, G.N. Silva, On the properness of the extension of dynamic optimization problems to allow impulsive controls. ESAIM: Control Optim. Calc. Var. 21(3), 857–875 (2015)

    Google Scholar 

  35. D. Yu. Karamzin, V.A. Oliveira, F.L. Pereira, G.N. Silva, On some extension of optimal control theory. Eur. J. Control 20(6), 284–291 (2014)

    Google Scholar 

  36. L. Magni, R. Scattolini, Model predictive control of continuous-time nonlinear systems with piecewise constant control. IEEE Trans. Autom. Control 49, 900–906 (2004)

    Article  MathSciNet  Google Scholar 

  37. L. Magni, R. Scattolini, M. Tanelli, Switched model predictive control for performance enhancement. Int. J. Control 81(12), 1859–1869 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. J.-P. Marec, Optimal Space Trajectories (Elsevier, Amsterdam, 1979)

    MATH  Google Scholar 

  39. B.S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory, II: Applications (Springer, Berlin, 2006)

    Google Scholar 

  40. F.L. Pereira, G.N. Silva, Necessary conditions of optimality for vector-valued impulsive control problems. Syst. Control Lett. 40(3), 205–215 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. F.L. Pereira, G.N. Silva, Stability for impulsive control systems. Dyn. Syst. 17(4), 421–434 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. F.L. Pereira, G.N. Silva, V.A. Oliveira, Invariance for impulsive control systems. Autom. Remote Control 69(5), 788–800 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. F. Lobo Pereira, G.N. Silva, A maximum principle for infinite time asymptotically stable impulsive dynamic control systems. NOLCOS 2010, 8th IFAC Symposium on Nonlinear Control Systems. Bologna, Italy, 13–16 Sept 2010

    Google Scholar 

  44. L.S. Pontragin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko, Mathematical Theory of Optimal Processes (Interscience Publishers, Wiley, New York, 1962). (English translation)

    Google Scholar 

  45. P. Riedinger, I.-C. Morarescu, A numerical framework for optimal control of switched input affine nonlinear systems subject to path constraints. Math. Comput. Simul. 95, 63–77 (2013)

    Article  MathSciNet  Google Scholar 

  46. R. Rishel, An extended pontryagin principle for control systems whose control laws contain measures. SIAM J. Control 3, 191–205 (1965)

    MathSciNet  MATH  Google Scholar 

  47. G.N. Silva, F.L. Pereira, Lyapounov stability for impulsive dynamical systems. Proc. IEEE Conf. Decis. Control 2, 2304–2309 (2002)

    Article  Google Scholar 

  48. P. Sopasakis, P. Patrinos, H. Sarimveis, A. Bemporad. Model predictive control for linear impulsive systems, in Proceedings of the 2012 IEEE 51st Annual Conference on Decision and Control (CDC) (IEEE, 2012) pp. 5164–5169

    Google Scholar 

  49. R.B. Vinter, Optimal Control (Birkhuser, Boston, 2000)

    MATH  Google Scholar 

  50. R.B. Vinter, F.L. Pereira, Maximum principle for optimal processes with discontinuous trajectories. SIAM Journal on Control and Optimization 26(1), 205–229 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

All the authors gratefully acknowledge the support of FCT under the projects “Advanced control of a fleet of heterogeneous autonomous vehicles” (PESSOA program), PTDC/EEI-AUT/1450/2012 and “Incentivo/EEI/UI0147/2014.” The first three authors also acknowledge the support of FCT under the projects PEst-OE/EEI/UI0147/2014, and the R&D unit SYSTEC—UID/EEA/00147/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Lobo Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lobo Pereira, F., Fontes, F.A.C.C., Pedro Aguiar, A., Borges de Sousa, J. (2015). An Optimization-Based Framework for Impulsive Control Systems. In: Olaru, S., Grancharova, A., Lobo Pereira, F. (eds) Developments in Model-Based Optimization and Control. Lecture Notes in Control and Information Sciences, vol 464. Springer, Cham. https://doi.org/10.1007/978-3-319-26687-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26687-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26685-5

  • Online ISBN: 978-3-319-26687-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics