Probing Cancer Cell Metabolism Using NMR Spectroscopy

Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 899)


Altered cellular metabolism is now accepted to be at the core of many diseases including cancer. Over the past 20 years, NMR has become a core technology to study these metabolic perturbations in detail. This chapter reviews current NMR-based methods for steady-state metabolism and, in particular, the use of non-radioactive stable isotope-enriched tracers. Opportunities and challenges for each method, such as 1D 1H NMR spectroscopy and 13C carbon-based NMR spectroscopic methods, are discussed. Ultimately, the combination of NMR and mass spectra as orthogonal technologies are required to compensate for the drawbacks of each technique when used singly are discussed.


NMR Cancer Metabolism 131Metabolomics Tracer analysis Stable isotopes HSQC MS 



The authors thank BBSRC and AstraZeneca for supporting Kate Hollinshead with a CASE studentship, the Wellcome Trust for supporting the HWB-NMR facility in Birmingham and lastly Sylvia C Miller and Jay Nath for critical reading of the manuscript.


  1. 1.
    Warburg O, Posener K, Negelein E. On the metabolism of carcinoma cells. Biochem Z. 1924;152:309–44.Google Scholar
  2. 2.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRefPubMedGoogle Scholar
  3. 3.
    Dang CV, Semenza GL. Oncogenic alterations of metabolism. Trends Biochem Sci. 1999;24(2):68–72.CrossRefPubMedGoogle Scholar
  4. 4.
    Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Metallo CM, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2012;481(7381):380–4.Google Scholar
  6. 6.
    Wise DR, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A. 2011;108(49):19611–6.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Frezza C, et al. Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature. 2011;477(7363):225–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Mullen AR, et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature. 2012;481(7381):385–8.Google Scholar
  9. 9.
    Possemato R, et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature. 2011;476(7360):346–50.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Le A, et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 2012;15(1):110–21.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yuneva MO, et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 2012;15(2):157–70.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tennant DA, Duran RV, Gottlieb E. Targeting metabolic transformation for cancer therapy. Nat Rev Cancer. 2010;10(4):267–77.CrossRefPubMedGoogle Scholar
  13. 13.
    Wishart DS, et al. HMDB 3.0-the human metabolome database in 2013. Nucleic Acids Res. 2013;41(D1):D801–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Parsons HM, et al. Improved classification accuracy in 1- and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarithm transformation. BMC Bioinformatics. 2007;8:234.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Marek EM, et al. Measurements of lactate in exhaled breath condensate at rest and after maximal exercise in young and healthy subjects. J Breath Res. 2010;4(1):017105.CrossRefPubMedGoogle Scholar
  16. 16.
    Sinclair AJ, et al. NMR-based metabolomic analysis of cerebrospinal fluid and serum in neurological diseases—a diagnostic tool? NMR Biomed. 2010;23(2):123–32.PubMedGoogle Scholar
  17. 17.
    Viant MR, et al. International NMR-based environmental metabolomics intercomparison exercise. Environ Sci Technol. 2009;43(1):219–25.CrossRefPubMedGoogle Scholar
  18. 18.
    Sands CJ, et al. Data-driven approach for metabolite relationship recovery in biological 1H NMR data sets using iterative statistical total correlation spectroscopy. Anal Chem. 2011;83(6):2075–82.CrossRefPubMedGoogle Scholar
  19. 19.
    Swann JR, et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4523–30.CrossRefPubMedGoogle Scholar
  20. 20.
    Guy AJ, et al. Metabolomic analysis of perfusate during hypothermic machine perfusion of human cadaveric kidneys. Transplantation. 2015;99(4):754–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Wilson M, et al. A constrained least-squares approach to the automated quantitation of in vivo H-1 magnetic resonance spectroscopy data. Magn Reson Med. 2011;65(1):1–12.CrossRefPubMedGoogle Scholar
  22. 22.
    Chung YL, Griffiths JR. Using metabolomics to monitor anticancer drugs. Ernst Schering Found Symp Proc. 2007;4:55–78.PubMedGoogle Scholar
  23. 23.
    Davies NP, et al. Non-invasive detection of glycine as a biomarker of malignancy in childhood brain tumours using in-vivo 1H MRS at 1.5 tesla confirmed by ex-vivo high-resolution magic-angle spinning NMR. NMR Biomed. 2010;23(1):80–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Mirbahai L, et al. 1H magnetic resonance spectroscopy metabolites as biomarkers for cell cycle arrest and cell death in rat glioma cells. Int J Biochem Cell Biol. 2011;43(7):990–1001.CrossRefPubMedGoogle Scholar
  25. 25.
    Dona AC, et al. Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping. Anal Chem. 2014;86(19):9887–94.CrossRefPubMedGoogle Scholar
  26. 26.
    Gueron M, Plateau P, Decorps M. Solvent signal suppression in NMR. Prog Nucl Magn Reson Spectrosc. 1991;23:135–209.CrossRefGoogle Scholar
  27. 27.
    Levitt M. Spin dynamics. 2nd ed. Chichester: Wiley; 2008.Google Scholar
  28. 28.
    Ramadan Z, et al. Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms. Talanta. 2006;68(5):1683–91.CrossRefPubMedGoogle Scholar
  29. 29.
    Ludwig C, Gunther UL. MetaboLab—advanced NMR data processing and analysis for metabolomics. BMC Bioinformatics. 2011;12:366.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Viant MR. Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochem Biophys Res Commun. 2003;310(3):943–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Aue WP, Karhan J, Ernst RR. Homonuclear broad-band decoupling and 2-dimensional J-resolved NMR-spectroscopy. J Chem Phys. 1976;64(10):4226–7.CrossRefGoogle Scholar
  32. 32.
    Ludwig C, Viant MR. Two-dimensional J-resolved NMR spectroscopy: review of a key methodology in the metabolomics toolbox. Phytochem Anal. 2010;21(1):22–32.CrossRefPubMedGoogle Scholar
  33. 33.
    Ludwig C, et al. Birmingham Metabolite Library: a publicly accessible database of 1-D H-1 and 2-D H-1 J-resolved NMR spectra of authentic metabolite standards (BML-NMR). Metabolomics. 2012;8(1):8–18.CrossRefGoogle Scholar
  34. 34.
    Buescher JM, et al. A roadmap for interpreting C metabolite labeling patterns from cells. Curr Opin Biotechnol. 2015;34:189–201.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Fan TW, et al. Stable isotope-resolved metabolomics and applications for drug development. Pharmacol Ther. 2012;133(3):366–91.CrossRefPubMedGoogle Scholar
  36. 36.
    Ugurbil K, et al. High-resolution 13C nuclear magnetic resonance studies of glucose metabolism in Escherichia coli. Proc Natl Acad Sci U S A. 1978;75(8):3742–6.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Shulman RG, et al. Cellular applications of 31P and 13C nuclear magnetic resonance. Science. 1979;205(4402):160–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Malloy CR, Sherry AD, Jeffrey FM. Evaluation of carbon flux and substrate selection through alternate pathways involving the citric acid cycle of the heart by 13C NMR spectroscopy. J Biol Chem. 1988;263(15):6964–71.PubMedGoogle Scholar
  39. 39.
    Metallo CM, Walther JL, Stephanopoulos G. Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J Biotechnol. 2009;144(3):167–74.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    DeBerardinis RJ, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A. 2007;104(49):19345–50.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lane AN, et al. Stable isotope-resolved metabolomics (SIRM) in cancer research with clinical application to nonsmall cell lung cancer. OMICS. 2011;15(3):173–82.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Howe PW, et al. Combined use of filtered and edited 1 H NMR spectroscopy to detect 13 C-enriched compounds in complex mixtures. NMR Biomed. 2012;25(11):1217–23.CrossRefPubMedGoogle Scholar
  43. 43.
    Xin LJ, et al. Assessment of metabolic fluxes in the mouse brain in vivo using H-1-[C-13] NMR spectroscopy at 14.1 Tesla. J Cereb Blood Flow Metab. 2015;35(5):759–65.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kazimierczuk K, Orekhov VY. Accelerated NMR spectroscopy by using compressed sensing. Angew Chem Int Ed Engl. 2011;50(24):5556–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Hyberts SG, et al. Ultrahigh-resolution (1)H-(13)C HSQC spectra of metabolite mixtures using nonlinear sampling and forward maximum entropy reconstruction. J Am Chem Soc. 2007;129(16):5108–16.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Stanek J, Kozminski W. Iterative algorithm of discrete Fourier transform for processing randomly sampled NMR data sets. J Biomol NMR. 2010;47(1):65–77.CrossRefPubMedGoogle Scholar
  47. 47.
    Ravanbakhsh S, et al. Accurate, fully-automated NMR spectral profiling for metabolomics. PLoS One. 2015;10(5):e0124219.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Xia J, et al. MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Res. 2015;43(W1):W251–7.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Fitzpatrick MA, McGrath CM, Young SP. Pathomx: an interactive workflow-based tool for the analysis of metabolomic data. BMC Bioinformatics. 2014;15(1):396.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lewis IA, Schommer SC, Markley JL. rNMR: open source software for identifying and quantifying metabolites in NMR spectra. Magn Reson Chem. 2009;47:S123–6.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Metabolism and Systems ResearchUniversity of BirminghamBirminghamUK

Personalised recommendations