Skip to main content

Physarum in Hybrid Electronic Devices

  • Chapter
  • First Online:
Advances in Physarum Machines

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 21))

Abstract

We discuss hybrid systems where the slime mould is interfaced with organic electronics devices. We demonstrate the realisation of slime mould Schottky diode and organic electrochemical transistor . A central part of the chapter is dedicated to the integration of the Physarum into organic memristive device , an electronic element with synapse-like properties. We describe an architecture and working principles of the hybrid devices and variations of their electrical and optical properties as a result of the interaction with slime mould. We demonstrate that the slime mould is a smart candidate for the implementation of functional properties of smart living systems into electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alibart, F., Pleutin, S., Bichler, O., Gamrat, C., Serrano-Gotarredona, T., Linares-Barranco, B., Vuillaume, D.: A memristive nanoparticle/organic hybrid synapstor for neuroinspired computing. Adv. Funct. Mater. 22(3), 609–616 (2012)

    Article  Google Scholar 

  2. Angelica, C., Alice, D., Tatiana, B., Victor, E.: Non-linear bioelectronic element: schottky effect and electrochemistry. Int. J. Unconv. Comput. 10, 375–379 (2014)

    Google Scholar 

  3. Baldi, G., Battistoni, S., Attolini, G., Bosi, M., Collini, C., Iannotta, S., Lorenzelli, L., Mosca, R., Ponraj, J., Verucchi, R., et al.: Logic with memory: and gates made of organic and inorganic memristive devices. Semicond. Sci. Technol. 29(10), 104009–104014 (2014)

    Article  Google Scholar 

  4. Berggren, M., Richter-Dahlfors, A.: Organic bioelectronics. Adv. Mater. 19(20), 3201–3213 (2007)

    Article  Google Scholar 

  5. Berzina, T., Troitsky, V., Vakula, S., Riccio, A., De Rosa, M., Nicolini, C.: Surface potential study of selective interaction of potassium ions with valinomycin in langmuir-blodgett films. Mater. Sci. Eng.: C 5(1), 1–6 (1997)

    Article  Google Scholar 

  6. Berzina, T., Erokhin, V., Fontana, M.: Spectroscopic investigation of an electrochemically controlled conducting polymer-solid electrolyte junction. J. Appl. Phys. 101(2), 024501 (2007)

    Article  Google Scholar 

  7. Berzina, T., Erokhina, S., Camorani, P., Konovalov, O., Erokhin, V., Fontana, M.: Electrochemical control of the conductivity in an organic memristor: a time-resolved x-ray fluorescence study of ionic drift as a function of the applied voltage. ACS Appl. Mater. Interfaces 1(10), 2115–2118 (2009)

    Article  Google Scholar 

  8. Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT press (1986)

    Google Scholar 

  9. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  10. Dimonte, A., Berzina, T., Cifarelli, A., Chiesi, V., Albertini, F., Erokhin, V. Conductivity patterning with physarum polycephalum: natural growth and deflecting. Phys. Status Solidi C 12(1–2), 197–201 (2015)

    Google Scholar 

  11. Dimonte, A., Fermi, F., Berzina, T., Erokhin, V.: Spectral imaging method for studying physarum polycephalum growth on polyaniline surface. Mater. Sci. Eng.: C 53, 11–14 (2015)

    Article  Google Scholar 

  12. Dion Khodagholy, A.: High transconductance organic electrochemical transistors. Nat. Commun. 4 (2013)

    Google Scholar 

  13. Erokhin, V.: Polymer-based adaptive networks. The new frontiers of organic and composite nanotechnologies, 287–353 (2008)

    Google Scholar 

  14. Erokhin, V., Berzina, T., Fontana, M.: Polymeric elements for adaptive networks. Crystallogr. Rep. 52(1), 159–166 (2007)

    Article  Google Scholar 

  15. Erokhin, V., Berzina, T., Camorani, P., Smerieri, A., Vavoulis, D., Feng, J., Fontana, M.P.: Material memristive device circuits with synaptic plasticity: learning and memory. BioNanoScience 1(1–2), 24–30 (2011)

    Article  Google Scholar 

  16. Erokhin, V., Howard, G.D., Adamatzky, A.: Organic memristor devices for logic elements with memory. Int. J. Bifurcat. and Chaos 22(11), 1250283 (2012)

    Article  MathSciNet  Google Scholar 

  17. Erokhin, V., Berzina, T., Gorshkov, K., Camorani, P., Pucci, A., Ricci, L., Ruggeri, G., Sigala, R., Schüz, A.: Stochastic hybrid 3d matrix: learning and adaptation of electrical properties. J. Mater. Chem. 22(43), 22881–22887 (2012)

    Article  Google Scholar 

  18. Erokhin, V., Fontana, M.: Thin film electrochemical memristive systems for bio-inspired computation. J. Comput. Theor. Nanosci. 8(3), 313–330 (2011)

    Article  Google Scholar 

  19. Focke, W.W., Wnek, G.E., Wei, Y.: Influence of oxidation state, pH, and counterion on the conductivity of polyaniline. J. Phys. Chem. 91(22), 5813–5818 (1987)

    Article  Google Scholar 

  20. Gospodinova, N., Mokreva, P., Terlemezyan, L.: Alternative concept of the transition emeraldine base-emeraldine salt. Polymer 34(6), 1330–1332 (1993)

    Article  Google Scholar 

  21. Hebb, D.O.: The organization of Behavior: a Neuropsychological Approach. John Wiley and Sons (1949)

    Google Scholar 

  22. Lanzani, G.: Materials for bioelectronics: organic electronics meets biology. Nat. Mater. 13(8), 775–776 (2014)

    Article  Google Scholar 

  23. Lin, P., Yan, F., Yu, J., Chan, H.L., Yang, M.: The application of organic electrochemical transistors in cell-based biosensors. Adv. Mater. 22(33), 3655–3660 (2010)

    Article  Google Scholar 

  24. Moller, S., Perlov, C., Jackson, W., Taussing, C., Reynolds, J.R.: A polymer semiconductor write-once read-many-times memory. Nature 426(166), 166–169 (2003)

    Article  Google Scholar 

  25. Neumann, E., Schaefer-Ridder, M., Wang, Y., Hofschneider, P.: Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1(7), 841 (1982)

    Google Scholar 

  26. Nilsson, D., Chen, M., Kugler, T., Remonen, T., Armgarth, M., Berggren, M.: Bi-stable and dynamic current modulation in electrochemical organic transistors. Adv. Mater. 14(1), 51–54 (2002)

    Article  Google Scholar 

  27. Pincella, F., Camorani, P., Erokhin, V.: Electrical properties of an organic memristive system. Appl. Phys. A 104(4), 1039–1046 (2011)

    Article  Google Scholar 

  28. Romeo, A., Dimonte, A., Tarabella, G., DAngelo, P., Erokhin, V., Iannotta, S.: A bio-inspired memory device based on interfacing physarum polycephalum with an organic semiconductor. APL Mater. 3(1) (2015)

    Google Scholar 

  29. Scott, J., Bozano, L.: Nonvolatile memory elements based on organic materials. Adv. Mater. 19(11), 1452–1463 (2007)

    Article  Google Scholar 

  30. Smerieri, A., Berzina, T., Erokhin, V., Fontana, M.: A functional polymeric material based on hybrid electrochemically controlled junctions. Mater. Sci. Eng.: C 28(1), 18–22 (2008)

    Article  Google Scholar 

  31. Smerieri, A., Berzina, T., Erokhin, V., Fontana, M.: Polymeric electrochemical element for adaptive networks: pulse mode. J. Appl. Phys. 104(11), 114513 (2008)

    Article  Google Scholar 

  32. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Google Scholar 

  33. Szachowicz-Petelska, B., Dobrzyńska, I., Figaszewski, Z.A., Kudelski, J.: Changes in the physico-chemical properties of human kidney cell membranes during the cancer transformation. Adv. Biol. Chem. 2014, (2014)

    Google Scholar 

  34. Tarabella, G., Mahvash Mohammadi, F., Coppede, N., Barbero, F., Iannotta, S., Santato, C., Cicoira, F.: New opportunities for organic electronics and bioelectronics: ions in action. Chem. Sci. 4, 1395–1409 (2013)

    Google Scholar 

  35. Tarabella, G., Pezzella, A., Romeo, A., D’Angelo, P., Coppedè, N., Calicchio, M., d’Ischia, M., Mosca, R., Iannotta, S.: Irreversible evolution of eumelanin redox states detected by an organic electrochemical transistor: en route to bioelectronics and biosensing. J. Mater. Chem.: B 1(31), 3843–3849 (2013)

    Article  Google Scholar 

  36. Tarabella, G., D’Angelo, P., Cifarelli, A., Dimonte, A., Romeo, A., Berzina, T., Erokhin, V., Iannotta, S.: A hybrid living/organic electrochemical transistor based on the physarum polycephalum cell endowed with both sensing and memristive properties. Chem. Sci. 6, 2859–2868 (2015)

    Article  Google Scholar 

  37. Tehrani, P., Kanciurzewska, A., Crispin, X., Robinson, N.D., Fahlman, M., Berggren, M.: The effect of ph on the electrochemical over-oxidation in pedot:pss films. Solid State Ionics 177(3940), 3521–3527 (2007)

    Article  Google Scholar 

  38. Tybrandt, K., Gabrielsson, E.O., Berggren, M.: Toward complementary ionic circuits: the NPN ion bipolar junction transistor. J. Am. Chem. Soc. 133(26), 10141–10145 (2011)

    Article  Google Scholar 

  39. Uehara, M., Sakane, K.K., Maciel, H.S., Urruchi, W.I.: Physics and biology: bio-plasma physics. Am. J. Phys. 68(5), 450–455 (2000)

    Article  Google Scholar 

  40. Ulman, A.: An Introduction to Ultrathin Organic Films: from Langmuir-Blodgett to Self-Assembly. Elsevier Science (2013)

    Google Scholar 

  41. Wang, X.Y.Y., Dong, R.: Organic memristive devices based on silver nanoparticles and dna. Org. Electron. 15, 3476–3481 (2014)

    Article  Google Scholar 

  42. Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833–840 (2007)

    Article  Google Scholar 

  43. Widrow, B., Pierce, W., Angell, J.: Birth, life, and death in microelectronic systems. IRE Transactions on Mil. Electron. 1051(3), 191–201 (1961)

    Article  Google Scholar 

  44. Zanetti, M., Maniglio, D., Fasoli, C., Pola, M., Borga, E., Corradi, C., DallaSerra, M., Iannotta, S., Motta, A., Toccoli, T.: A new cells-compatible microfluidic device for single channel recordings. Electroanalysis 26(8), 1653–1659 (2014)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission, under the Collaborative project PhyChip (grant agreement number 316366).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Dimonte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dimonte, A., Battistoni, S., Erokhin, V. (2016). Physarum in Hybrid Electronic Devices. In: Adamatzky, A. (eds) Advances in Physarum Machines. Emergence, Complexity and Computation, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-26662-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26662-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26661-9

  • Online ISBN: 978-3-319-26662-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics