Fuzzy Logic Type 1 and Type 2 LabVIEW FPGA Toolkit

  • Pedro Ponce-CruzEmail author
  • Arturo Molina
  • Brian MacCleery
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 334)


This chapter presents the toolkit developed for LabVIEW FPGA, so that it is possible to implement Fuzzy Logic systems in LabVIEW FPGA in a fast way by the Toolkit. The main blocks can be used for implementing complex fuzzy logic control systems that can be adjusted to different applications according to the user needs. The theoretical part was covered in chapter one; thus this chapter deals with the implementation of fuzzy logic systems.


Fuzzy Logic Fuzzy Logic Controller Functional Block Noisy Signal Firing Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Ramírez, J. Miranda, O. Davila, G. Tello, A. Molina, Reconfigurable didactic microfactory with universal numerical control, in 14th IFAC Symposium on Information Control Problems in, INCOM´2011, vol. 14, pp. 463–468, 2011Google Scholar
  2. 2.
    S.T. Fleming, D.B. Thomas, FPGA based control for real time systems, in 23rd International Conference on Field Programmable Logic and Applications (FPL), 2013. doi: 10.1109/FPL.2013.6645610
  3. 3.
    J. Paulo Davim, M.J. Jackson, Nano and micromachining (Wiley, New York, 2010), 212 pagesGoogle Scholar
  4. 4.
    O. Iordan, I. Vicol, A.M. Matei, A. Grama, Current state of research in the field on micromilling,
  5. 5.
    F. Huo, A.-N. Po, Precision countouring control of machine tools. Int. J. Adv. Manuf. Technol. 64, 319–333 (2013)CrossRefGoogle Scholar
  6. 6.
    P. Piljek, Z. Keran, M. Math, Micromachining. Interdisc. Description Complex Syst. 12(1), 1–27 (2014)CrossRefGoogle Scholar
  7. 7.
    E. Kamenar, S. Zelenika, Micropositioning mechatronics system based on FPGA architecture, in 36th International Convention on Information & communication Technology electronics & Microelectronics (MIPRO), pp. 125–130, 2013Google Scholar
  8. 8.
    L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. (Ny). 8(3), 199–249 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    L.A. Zadeh, 1965 J(Zadeh) Fuzzy Sets.pdf. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  10. 10.
    D. Wu, W.W. Tan, A simplified architecture for type-2 FLSs and its application to nonlinear control, in IEEE Conference Cybernetics and Intelligent Systems 2004, vol. 1, pp. 485–490, 2004Google Scholar
  11. 11.
    S. Coupland, R. John, A fast geometric method for defuzzification of type-2 fuzzy sets. IEEE Trans. Fuzzy Syst. 16(4), 929–941 (2008)CrossRefGoogle Scholar
  12. 12.
    Q. Liang, J.M. Mendel, Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)CrossRefGoogle Scholar
  13. 13.
    J.M. Mendel, L. Fellow, R.I. John, F. Liu, S. Member, Interval type-2 fuzzy logic systems made simple. Fuzzy Syst. IEEE Trans. 14(6), 808–821 (2006)Google Scholar
  14. 14.
    J.M. Mendel, Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 10(5), 622–639 (2002)CrossRefGoogle Scholar
  15. 15.
    D. Wu, J.M. Mendel, On the continuity of type-1 and interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 19(1), 179–192 (2011)CrossRefGoogle Scholar
  16. 16.
    L.A. Lucas, T.M. Centeno, M.R. Delgado, General type-2 fuzzy inference systems: analysis, design and computational aspects, in IEEE International Conference on Fuzzy Systems, vol. 5, pp. 1–6, 2007Google Scholar
  17. 17.
    K. Duran, H. Bernal, M. Melgarejo, Improved iterative algorithm for computing the generalized centroid of an interval type-2 fuzzy set, in NAFIPS 2008–2008 Annual Meeting of the North American Fuzzy Information Processing Society, pp. 1–5, May 2008Google Scholar
  18. 18.
    D. Wu, J.M. Mendel, Enhanced Karnik–Mendel algorithms. IEEE Trans. Fuzzy Syst. 17(4), 923–934 (2009)CrossRefGoogle Scholar
  19. 19.
    M. Nie, W.W. Tan, Towards an efficient type-reduction method for interval type-2 fuzzy logic systems. IEEE Int. Conf. Fuzzy Syst. 2, 1425–1432 (2008)Google Scholar
  20. 20.
    J.M. Mendel, On a 50 % savings in the computation of the centroid of a symmetrical interval type-2 fuzzy set. Inf. Sci. (Ny) 172(3–4), 417–430 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    J.M. Mendel, L. Fellow, X. Liu, simplified interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 21(6), 1056–1069 (2013)CrossRefGoogle Scholar
  22. 22.
    A. Tellez-Velazquez, H. Molina-Lozano, L.A. Villa-Vargas, The Tellez-Molina-Villa Algorithm, in 2012 Annual Meeting of the North American Fuzzy Information Processing Society, pp. 1–6, Aug 2012. doi: 10.1109/NAFIPS.2012.6291017
  23. 23.
    H.-J. Wu, Y.-L. Su, S.-J. Lee, A fast method for computing the centroid of a type-2 fuzzy set. IEEE Trans. Syst. Man Cybern. B Cybern. 42(3), 764–777 (2012)CrossRefGoogle Scholar
  24. 24.
  25. 25.
    T. Dam, P-R. Ouyang, Position domain contour tracking with cross-coupled control, in IEEE International Symposium on Industrial Electronics (ISIE), pp. 1303–1308, 2012Google Scholar
  26. 26.
    Y. Koren, C.C. Lo, Advanced controllers for feed drives. CIRP Ann.-Manuf. Appl. Int. Conf. 41(2), 689–698 (1992)CrossRefGoogle Scholar
  27. 27.
    O. Castillo, P. Melin, Type-2 Fuzzy Logic: Theory and Applications (Springer Science, Berlin). ISBN: 978-3-540-76283-6Google Scholar
  28. 28.
    X. Ling, Q. Li, T. Wang, J. Dong, Z. Tang, Y. Ding, Research and decision of motion controller for CNC based on fuzzy PID algorithm with feedforward control, in International Conference on Control, Automation and Systems Engineering (CASE), pp. 1–4, 2011Google Scholar
  29. 29.
  30. 30.
    LabVIEW FPGA website:, revised 2014
  31. 31.
    K. Ogata, Discrete-Time Control Systems, vol. 2. (Prentice Hall, Englewood Cliffs, NJ, 1995)Google Scholar
  32. 32.
    P. An-Hua, Gra-based approach to PID parameter tuning for closed-loop servo systems, in Control and Decision Conference (CCDC) 25th Chinese, pp. 1628–1633, 2013Google Scholar
  33. 33.
    A.Y. Jaen-Cuellar, R.J. Romero-Troncoso, L. Morales-Velazquez, R.A. Osornio- Rios, PID-controller tuning optimization with genetic algorithms in servo systems. Int. J. Adv. Robot. Syst. (2013). doi: 10.5772/56697
  34. 34.
  35. 35.
    NI: NI 9505 PWM Generation-Improved. [Online]. Available:
  36. 36.
    J.M. Mendel, Type-2 fuzzy sets and systems: an overview. IEEE Comput. Intell. Mag. 2(1), 20–29 (2007)CrossRefGoogle Scholar
  37. 37.
    J. Mendel, F. Liu, Super-exponential convergence of the Karnik–Mendel algorithms used for type-reduction in interval type-2 fuzzy logic systems, in IEEE International Conference on Fuzzy Systems, VancoGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pedro Ponce-Cruz
    • 1
    Email author
  • Arturo Molina
    • 1
  • Brian MacCleery
    • 2
  1. 1.Tecnologico de MonterreyCampus Ciudad de MéxicoTlalpanMexico
  2. 2.National Instruments CorporationAustinUSA

Personalised recommendations