Literature Review for Digital Implementations of Fuzzy Logic Type-1 and Type-2

  • Pedro Ponce-CruzEmail author
  • Arturo Molina
  • Brian MacCleery
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 334)


Some works are described below where optimization Type-1 and Type-2 FLS have had relative success according to different areas, illustrating the advantages of using methods to automate process with fuzzy controllers.


  1. 1.
    K. Sudha, R. Vijaya Santhi, Robust decentralized load frequency control of interconnected power system with generation rate constraint using type-2 fuzzy approach. Int. J. Electr. Power Energy Syst. 33, 699–707 (2011)CrossRefGoogle Scholar
  2. 2.
    E.A. Jammeh, M. Fleury, C. Wagner, H. Hagras, M. Ghanbari, Interval type-2 fuzzy logic congestion control for video streaming across IP networks. IEEE Trans. Fuzzy Syst. 17, 1123–1142 (2009)CrossRefGoogle Scholar
  3. 3.
    C.-H. Lee, Y.-C. Lin, An adaptive type-2 fuzzy neural controller for nonlinear uncertain systems. Cont. Intell. Syst. 33, 13–25 (2005)Google Scholar
  4. 4.
    M. Biglarbegian, W. Melek, J.M. Mendel, Design of novel interval type-2 fuzzy controllers for modular and reconfigurable robots: theory and experiments. IEEE Trans. Ind. Electron. 58, 1371–1384 (2011)CrossRefGoogle Scholar
  5. 5.
    G.O. Koca, Z.H. Akpolat, M. Özdemir, Type-2 fuzzy sliding mode control of a four-bar mechanism. Int. J. Model. Simul. 31, 60 (2011)Google Scholar
  6. 6.
    K. Poornaselvan, T.G. Kumar, V.P. Vijayan, Agent based ground flight control using type-2 fuzzy logic and hybrid ant colony optimization to a dynamic environment, in First International Conference on Emerging Trends in Engineering and Technology (ICETET’08), pp. 343–348 (2008)Google Scholar
  7. 7.
    M. Zaher, H. Hagras, Data generated type-2 fuzzy logic model for control of wind turbines, in 10th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 80–85 (2010)Google Scholar
  8. 8.
    M. Galluzzo, B. Cosenza, Adaptive type-2 fuzzy logic control of a bioreactor. Chem. Eng. Sci. 65, 4208–4221 (2010)CrossRefGoogle Scholar
  9. 9.
    H. Chaoui, W. Gueaieb, Type-2 fuzzy logic control of a flexible-joint manipulator. J. Intell. Rob. Syst. 51, 159–186 (2008)CrossRefGoogle Scholar
  10. 10.
    D.V. Petrović, M. Tanasijević, V. Milić, N. Lilić, S. Stojadinović, I. Svrkota, Risk assessment model of mining equipment failure based on fuzzy logic. Expert Syst. Appl. 41, 8157–8164 (2014)CrossRefGoogle Scholar
  11. 11.
    M. Baldania, D. Sawant, A. Patki, Dynamic rule based approach to reduce power consumption of the fuzzy logic controller for embedded applications,” in First International Conference on Networks & Soft Computing (ICNSC), pp. 193–197 (2014)Google Scholar
  12. 12.
    V. Novak, V. Pavliska, R. Valasek, Specialized software for fuzzy natural logic and fuzzy transform applications, in IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 2337–2344 (2014)Google Scholar
  13. 13.
    W. Arbex, M. Martins, M.V. Silva, L.A. Carvalho, Fuzzy inference to decision support for SNP discovery, in 7th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6 (2012)Google Scholar
  14. 14.
    W. Ai-Zhen, R.G. Feng, The Design of Neural Network Fuzzy Controller in Washing Machine, in International Conference on Computing, Measurement, Control and Sensor Network (CMCSN), pp. 136–139 (2012)Google Scholar
  15. 15.
    Q. Liang, J.M. Mendel, Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive filters. IEEE Trans. Fuzzy Syst. 8, 551–563 (2000)CrossRefGoogle Scholar
  16. 16.
    Q. Liang, J.M. Mendel, MPEG VBR video traffic modeling and classification using fuzzy technique. IEEE Trans. Fuzzy Syst. 9, 183–193 (2001)CrossRefGoogle Scholar
  17. 17.
    H.B. Mitchell, Pattern recognition using type-II fuzzy sets. Inf. Sci. 170, 409–418 (2005)CrossRefGoogle Scholar
  18. 18.
    P. Herman, G. Prasad, T. McGinnity, Investigation of the type-2 fuzzy logic approach to classification in an EEG-based brain-computer interface, in 27th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE-EMBS 2005), pp. 5354–5357 (2006)Google Scholar
  19. 19.
    N.N. Karnik, J.M. Mendel, Applications of type-2 fuzzy logic systems to forecasting of time-series. Inf. Sci. 120, 89–111 (1999)CrossRefzbMATHGoogle Scholar
  20. 20.
    T. Ozen, J.M. Garibaldi, Effect of type-2 fuzzy membership function shape on modelling variation in human decision making,” in IEEE International Conference on Fuzzy Systems, pp. 971–976 (2004)Google Scholar
  21. 21.
    Q. Liang and L. Wang, “Sensed signal strength forecasting for wireless sensors using interval type-2 fuzzy logic system,” in The 14th IEEE International Conference on Fuzzy Systems (FUZZ’05), pp. 25–30 (2005)Google Scholar
  22. 22.
    O. Castillo and P. Melin, “Adaptive Noise Cancellation Using Type-2 Fuzzy Logic and Neural Networks,” in Type-2 Fuzzy Logic: Theory and Applications, ed: Springer, 2008, pp. 213–223Google Scholar
  23. 23.
    C.-H. Lee, Y.-C. Lin, W.-Y. Lai, Systems identification using type-2 fuzzy neural network (type-2 FNN) systems, in IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 1264–1269 (2003)Google Scholar
  24. 24.
    F.-H. Rhee, C. Hwang, An interval type-2 fuzzy perceptron, in Proceedings of the 2002 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’02), pp. 1331–1335 (2002)Google Scholar
  25. 25.
    J.M. Keller, M.R. Gray, J.A. Givens, A fuzzy k-nearest neighbor algorithm. Syst. Man Cybern. IEEE Trans. (4), 580–585 (1985)Google Scholar
  26. 26.
    J. Agero, A. Vargas, Using type-2 fuzzy logic systems to infer the operative configuration of distribution networks,” in Proceedings IEEE Power Engineering Society General Meeting, pp. 2379–2386 (2005)Google Scholar
  27. 27.
    N. Sulaiman, Z.A. Obaid, M. Marhaban, M. Hamidon, FPGA-based fuzzy logic: design and applications–a review. IACSIT Int. J. Eng. Technol. 1, 491–503 (2009)CrossRefGoogle Scholar
  28. 28.
    G. Muscato, Fuzzy control of an underactuated robot with a fuzzy microcontroller. Microprocess. Microsyst. 23, 385–391 (1999)CrossRefGoogle Scholar
  29. 29.
    L. Faravelli, R. Rossi, G. Torelli, Numerical testing of a programmable microcontroller with fuzzy and adaptive features. Simul. Model. Pract. Theory 11, 421–431 (2003)CrossRefGoogle Scholar
  30. 30.
    A.M. El-Nagar, M. El-Bardini, Practical Implementation for the interval type-2 fuzzy PID controller using a low cost microcontroller. Ain Shams Eng. J. 5, 475–487 (2014)CrossRefGoogle Scholar
  31. 31.
    G. Bal, E. Bekiroǧlu, Ş. Demirbaş, I. Colak, Fuzzy logic based DSP controlled servo position control for ultrasonic motor. Energy Convers. Manag. 45, 3139–3153 (2004)CrossRefGoogle Scholar
  32. 32.
    Y.L. Goh, A.K. Ramasamy, F.H. Nagi, A.A. Zainul Abidin, DSP based fuzzy and conventional overcurrent relay controller comparisons. Microelectron. Reliab. 53, 1029–1035 (2013)CrossRefGoogle Scholar
  33. 33.
    Y.L. Goh, A.K. Ramasamy, F.H. Nagi, A.A.Z. Abidin, DSP based overcurrent relay using fuzzy bang–bang controller. Microelectron. Reliab. 51, 2366–2373 (2011)CrossRefGoogle Scholar
  34. 34.
    P.-H. Chou, C.-S. Chen, F.-J. Lin, DSP-based synchronous control of dual linear motors via Sugeno type fuzzy neural network compensator. J. Franklin Inst. 349, 792–812 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    M.A. Melgarejo R, C.A. Peña-Reyes, Hardware architecture and FPGA implementation of a type-2 fuzzy system, in Proceedings of the 14th ACM Great Lakes Symposium on VLSI, pp. 458–461 (2004)Google Scholar
  36. 36.
    E. Ramadan, M. El-bardini, M. Fkirin, Design and FPGA-implementation of an improved adaptive fuzzy logic controller for DC motor speed control. Ain Shams Eng. J. (2014)Google Scholar
  37. 37.
    A. Messai, A. Mellit, A. Guessoum, S. Kalogirou, Maximum power point tracking using a GA optimized fuzzy logic controller and its FPGA implementation. Sol. Energy 85, 265–277 (2011)CrossRefGoogle Scholar
  38. 38.
    M.P. Soares dos Santos, J. Ferreira, Novel intelligent real-time position tracking system using FPGA and fuzzy logic. ISA Trans. 53, 402–414 (2014)CrossRefGoogle Scholar
  39. 39.
    D.M. Munoz, C.H. Llanos, M. Ayala-Rincon, R.H. van Els, Distributed approach to group control of elevator systems using fuzzy logic and FPGA implementation of dispatching algorithms. Eng. Appl. Artif. Intell. 21, 1309–1320 (2008)CrossRefGoogle Scholar
  40. 40.
    L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefzbMATHGoogle Scholar
  41. 41.
    L.A. Zadeh, Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4, 103–111 (1996)CrossRefGoogle Scholar
  42. 42.
    B.K. Bose, Power electronics and variable frequency drives: technology and applications (IEEE Press, New Jersey, 2010)Google Scholar
  43. 43.
    M. Zamani, H. Nejati, A.T. Jahromi, A. Partovi, S.H. Nobari, G.N. Shirazi, Toolbox for Interval Type-2 Fuzzy Logic Systems, in 11th Joint International Conference on Information Sciences (2008)Google Scholar
  44. 44.
    E.H. Mamdani, Application of fuzzy algorithms for control of simple dynamic plant,” in Proceedings of the Institution of Electrical Engineers, pp. 1585–1588 (1974)Google Scholar
  45. 45.
    D. Wu, W.W. Tan, A simplified architecture for type-2 FLSs and its application to nonlinear control, in IEEE Conference on Cybernetics and Intelligent Systems, pp. 485–490 (2004)Google Scholar
  46. 46.
    M. Mizumoto, K. Tanaka, Some properties of fuzzy sets of type 2. Inf. Control 31, 312–340 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    J.M. Mendel, H. Hagras, W.W. Tan, W. Melek, H. Ying, Introduction to Type-2 Fuzzy Logic Control: Theroy and Applications (Wiley, New York, 2014)Google Scholar
  48. 48.
    T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control. Systems, IEEE Trans. Man Cybern. 116–132 (1985)Google Scholar
  49. 49.
    M. Sugeno, G. Kang, Structure identification of fuzzy model. Fuzzy Sets Syst. 28, 15–33 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    F. Liu, An efficient centroid type-reduction strategy for general type-2 fuzzy logic system. Inf. Sci. 178, 2224–2236 (2008)MathSciNetCrossRefGoogle Scholar
  51. 51.
    L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8, 199–249 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    N.N. Karnik, J.M. Mendel, Centroid of a type-2 fuzzy set. Inf. Sci. 132, 195–220 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    P. Ponce, Inteligencia artificial con aplicaciones a la ingeniería: Alfaomega (2011)Google Scholar
  54. 54.
    J.M. Mendel, Uncertain Rule-Based Fuzzy Logic System: Introduction and New Directions (2001)Google Scholar
  55. 55.
    L.A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. Syst. Man Cybern. 28-44 (1973)Google Scholar
  56. 56.
    N.N. Karnik, J.M. Mendel, Q. Liang, Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7, 643–658 (1999)CrossRefGoogle Scholar
  57. 57.
    M.B. Gorzałczany, A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst. 21, 1–17 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    D.G. Schwartz, The case for an interval-based representation of linguistic truth. Fuzzy Sets Syst. 17, 153–165 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    I. Türkşen, Fuzzy normal forms. Fuzzy Sets Syst. 69, 319–346 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    G.J. Klir, T.A. Folger, Fuzzy Sets, Uncertainty, and Information (1988)Google Scholar
  61. 61.
    Q. Liang, J.M. Mendel, Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8, 535–550 (2000)CrossRefGoogle Scholar
  62. 62.
    H. Wu, J.M. Mendel, Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 10, 622–639 (2002)CrossRefGoogle Scholar
  63. 63.
    J.M. Mendel, On a 50% savings in the computation of the centroid of a< i> symmetrical</i> interval type-2 fuzzy set. Inf. Sci. 172, 417–430 (2005)MathSciNetCrossRefGoogle Scholar
  64. 64.
    S. Coupland, R. John, A fast geometric method for defuzzification of type-2 fuzzy sets. IEEE Trans. Fuzzy Syst. 16, 929–941 (2008)CrossRefGoogle Scholar
  65. 65.
    D. Wu, J.M. Mendel, Enhanced karnik–mendel algorithms. IEEE Trans. Fuzzy Syst. 17, 923–934 (2009)CrossRefGoogle Scholar
  66. 66.
    H.-J. Wu, Y.-L. Su, S.-J. Lee, A fast method for computing the centroid of a type-2 fuzzy set. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42, 764–777 (2012)CrossRefGoogle Scholar
  67. 67.
    J.M. Mendel, R.B. John, Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10, 117–127 (2002)CrossRefGoogle Scholar
  68. 68.
    N.N. Karnik, J.M. Mendel, Introduction to type-2 fuzzy logic systems,” in The 1998 IEEE International Conference on Fuzzy Systems Proceedings, IEEE World Congress on Computational Intelligence, pp. 915–920 (1998)Google Scholar
  69. 69.
    N.N. Karnik, J.M. Mendel, Operations on type-2 fuzzy sets. Fuzzy Sets Syst. 122, 327–348 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    C. Coza, C.J.B. Macnab, A new robust adaptive-fuzzy control method applied to quadrotor helicopter stabilization, in Fuzzy Information Processing Society, 2006. NAFIPS 2006. Annual meeting of the North American, pp. 454–458. IEEE (2006, June)Google Scholar
  71. 71.
    M.L. Santos, Intelligent fuzzy controller of a quadrotor. IEEE, pp. 141–146 (2010)Google Scholar
  72. 72.
    A.R. Kirli, Self tuning fuzzy PD application on TI TMS320F28335 for an experimental stationary Quadrotor. Yildiz Tech. Univ (2010)Google Scholar
  73. 73.
    S.S. Sheikhpour, a model-based fuzzy controller using the parallel distributed compensation method for quadrotorattitude stabilization. Sharif University of Technology. Anticlockwise Roll, D: Clockwise Roll, E: Anticlockwise Pitch, F: Clockwise Pitch (2013)Google Scholar
  74. 74.
    I.K. Ilhan, Type-2 Fuzzy based quadrotorcontrol approach, in 9th Asian Control Conference (ASCC) (IEEE, Istanbul, 2013), pp. 1–6Google Scholar
  75. 75.
    P. Bhatkhande, T.C. Havens, Real time fuzzy controller for quadrotor stability control, in Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on, pp. 913–919. IEEE (2014, July)Google Scholar
  76. 76.
    G.D. Qingji, Research of stability augmentation hybrid controller for quadrotor UAV, in 26th Chinese Control and Decision Conference (CCDC) (IEEE, Tianjin, 2014), pp. 5224–5229Google Scholar
  77. 77.
    J.M. Brito, Quadrotor Prototype. Dissertação para obtenção do Grau de M[estre. Lisboa: Universidad Técnica de Lisboa (2009)Google Scholar
  78. 78.
    G.H. Hoffmann, QuadrotorHelicopter Flight Dynamics and Control:Theory and Experiment, in AIAA Guidance, Navigation and Control Conference and Exhibit (American Institute of Aeronautics and Astronautics, South Carolina, 2007)Google Scholar
  79. 79.
    J.M. Mendel, R. John, F. Liu, Interval type-2 fuzzy logic systems made simple. Fuzzy Syst. IEEE Trans. 14(6), 808–821 (2006)Google Scholar
  80. 80.
    J.M. Mendel, Type-2 fuzzy sets and systems: an overview. Comput. Intell. Mag. IEEE 2(1), 20–29 (2007)Google Scholar
  81. 81.
    J.-S.R. Jang, ANFIS: Adaptive-Network-based Fuzzy Inference Systems. IEEE Trans. Syst. Man Cybern. 665–685 (1993)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pedro Ponce-Cruz
    • 1
    Email author
  • Arturo Molina
    • 1
  • Brian MacCleery
    • 2
  1. 1.Tecnologico de MonterreyCampus Ciudad de MéxicoTlalpanMexico
  2. 2.National Instruments CorporationAustinUSA

Personalised recommendations