Advertisement

Sectional Curvature Comparison II

  • Peter Petersen
Chapter
  • 7.6k Downloads
Part of the Graduate Texts in Mathematics book series (GTM, volume 171)

Abstract

In the first section we explain how one can find generalized gradients for distance functions in situations where the function might not be smooth. This critical point technique is used in the proofs of all the big theorems in this chapter.

Keywords

Totally Convex Nonnegative Sectional Curvature Betti Number Estimate Soul Theorem Positive Isotropic Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. 18.
    R. Bott, L.W. Tu, Differential Forms in Algebraic Topology (Springer, New York 1982)CrossRefzbMATHGoogle Scholar
  2. 19.
    S. Brendle, R. Schoen, Classification of manifolds with weakly 1/4-pinched curvatures. Acta Math. 200(1), 1–13 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 20.
    S. Brendle, R. Schoen, Manifolds with 1/4-pinched curvature are space forms. J. Am. Math. Soc. 22(1), 287–307 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 28.
    J. Cheeger et al., Geometric Topology: Recent Developments, LNM 1504 (Springer, Berlin-Heidelberg, 1991)CrossRefGoogle Scholar
  5. 32.
    S.S. Chern, (ed.), Global Geometry and Analysis, 2nd edition, MAA Studies 27 (Mathematical Assocoation of America, Washington, 1989)Google Scholar
  6. 33.
    F.H. Clarke et al. Nonsmooth Analysis and Control Theory (Springer, New York, 1998)zbMATHGoogle Scholar
  7. 49.
    G. Gibbons, S. Hawking, Gravitational multi-instantons. Phys. Lett. B 78, 430–432 (1978)CrossRefGoogle Scholar
  8. 51.
    R. Greene, S.T. Yau (eds.), Proceedings of Symposia in Pure Mathematics, vol. 54, 3 (1994)Google Scholar
  9. 54.
    K. Grove, P. Petersen (eds.), Comparison Geometry, vol. 30 (MSRI publications, New York; Cambridge University Press, Cambridge, 1997)Google Scholar
  10. 56.
    K. Grove, K. Shiohama, A generalized sphere theorem. Ann. Math. (2) 106(2), 201–211 (1977)Google Scholar
  11. 59.
    K. Grove, P. Petersen, J.-Y. Wu, Geometric finiteness theorems via controlled topology. Invest. Math. 99, 205–213 (1990); Erratum Invest. Math. 104, 221–222 (1991)Google Scholar
  12. 73.
    M.J. Micallef, J.D. Moore, Minimal 2-spheres and the topology of manifolds with positive curvature on totally isotropic 2-planes. Ann. Math. 127, 199–227 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 82.
    M. Özaydın, G. Walschap, Vector bundles with no soul. PAMS 120, 565–567 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 84.
    P. Pambuccian, T. Zamfirescu, Paolo Pizzetti: The forgotten originator of triangle comparison geometry. Historia Mathematica 38, 415–422 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 85.
    G. Perel’man, Alexandrov’s spaces with curvatures bounded from below II, preprintGoogle Scholar
  16. 87.
    P. Petersen, T. Tao, Classification of almost quarter-pinched manifolds. Proc. Am. Math. Soc. 137(7), 2437–2440 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 88.
    P. Petersen, G. Wei, Relative volume comparison with integral Ricci curvature bounds. Geom. Funct. Anal. 7, 1031–1045 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 91.
    P. Petersen, S. Shteingold, G. Wei, Comparison geometry with integral curvature bounds. Geom. Funct. Anal. 7, 1011–1030 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 102.
    M. Weiss, Curvature and finite domination. Proc. Am. Math. Soc. 124(2), 615–622 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 104.
    B. Wilking, Index parity of closed geodesics and rigidity of Hopf fibrations. Invent. Math. 144(2), 281–295 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Peter Petersen
    • 1
  1. 1.Department of MathematicsUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations