Skip to main content

Diffraction & X-Ray Excitation

  • Chapter
  • First Online:
Transmission Electron Microscopy
  • 11k Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

General References

  • Jones IP (2002) Determining the Locations of Chemical Species in Ordered Compounds: ALCHEMI. Advances in Imaging and Electron Physics 125:63–117

    Article  Google Scholar 

  • Spence JCH, Taftø J (1983) ALCHEMI: a New Technique for Locating Atoms in Small Crystals. J Microsc 130:147–154

    Article  Google Scholar 

  • Taftø J, Krivanek OL (1982) Site-Specific Valence Determination by Electron Energy-Loss Spectroscopy. Phys Rev Lett 48:560–563

    Article  Google Scholar 

Specific References

  • Anderson IM, Bentley J (1994) ALCHEMI formulated for delocalization and anti-site defects Proc. ICEM13, Paris, France. vol. 1., p 609

    Google Scholar 

  • Anderson IM, Duncan AJ, Bentley J (1995) Determination of Site Occupancies in Aluminide intermetallics by ALCHEMI. High Temperature Ordered Intermetallic Alloys, vol. 64. MRS, Pittsburgh PA, pp 443–448

    Google Scholar 

  • Anderson IM, Duncan AJ, Bentley J (1999) Site-distributions of Fe Alloying Additions to B2-ordered NiAl. Intermetallics 7:1017–1024

    Article  Google Scholar 

  • Banerjee D, Gogia AK, Nandi TK, Joshi VA (1988) A New Ordered Orthorhombic Phase in a Ti3AlNb Alloy. Acta Metall 36:871–882

    Article  Google Scholar 

  • Bastow TJ, Rossouw CJ (1998) Lattice Site Determination of Dilute Cu in β-phase NiAl by 63 Cu Nuclear Magnetic Resonance and X-ray Emission Channelling Patterns. Philos Mag Letters 78:461–467

    Article  Google Scholar 

  • Bourdillon AJ, Self PG, Stobbs WM (1981) Crystallographic Orientation Effects in Energy Dispersive X-ray Analysis. Philos Mag A 44:1335–1350

    Article  Google Scholar 

  • Bradley AJ, Taylor A (1937) An X-ray analysis of the nickel-aluminium system. Proc Roy Soc A159:56–62

    Article  Google Scholar 

  • Darolia R, Lahrman DF, Field RD, Freeman AJ (1989) Alloy Modeling and Experimental Correlation for Ductility Enhancement in NiAl High Temperature Ordered Intermetallic Alloys III. MRS, Pittsburgh PA, pp 113–118

    Google Scholar 

  • Field RD, Lahrman DF, Darolia R (1991) The Effect of Alloying on Slip Systems in Oriented NiAl Single Crystals. Acta Metall Mater 39:2961–2969

    Article  Google Scholar 

  • Hou D-H, Fraser HL (1997) The Ordering Scheme in Nb Aluminides with the B2 Crystal Structure. Scripta Mater 36:617–623

    Article  Google Scholar 

  • Jiang N, Hou D-H, Jones IP, Fraser HL (1999) Optimizing the ALCHEMI Technique. Philos Mag A 79:2525–2538

    Article  Google Scholar 

  • Jones IP (2002) Determining the Locations of Chemical Species in Ordered Compounds: ALCHEMI. Advances in Imaging and Electron Physics 125:63–117

    Article  Google Scholar 

  • Klie RF, Arslan I, Browning ND (2005) Atomic Resolution Electron Energy-Loss Spectroscopy. J. Elect Spect Rel Phenom 143:107–117

    Google Scholar 

  • Matsumura S, Morimura T, Oki K (1991) An analytical electron-diffraction technique for the determination of long-range order parameters in multicomponent ordered alloys. Mat Trans JIM 32:905

    Article  Google Scholar 

  • Munroe PR, Baker I (1990) An ALCHEMI Investigation of Ternary Site Occupancy in NiAl-based Alloys. Proc XIIth ICEM, Seattle, U.S.A., pp 448–449

    Google Scholar 

  • Munroe PR, Baker I (1992) Effect of Accelerating Voltage on Planar and Axial Channeling in Ordered Intermetallic Compounds. J Mater Res 7:2119–2125

    Article  Google Scholar 

  • Oxley MP, Allen LJ (2000) Atomic Scattering Factors for K- shell and L-shell Ionization by Fast Electrons. Acta Cryst A56:470–490

    Article  Google Scholar 

  • Pennycook SJ (1988a) Delocalization Corrections for Electron Channeling Analysis. Ultramicroscopy 26:239–248

    Article  Google Scholar 

  • Pennycook SJ (1988b) Impurity Lattice and Sublattice Location by Electron Channeling. Scanning Microscopy 2:21–30

    Google Scholar 

  • Rossouw CJ, Miller PR (1999a) Analysis of Incoherent Channelling Patterns Formed by X-ray Emission from Host Lattice Species and Interstitial Cr in Mullite. J Electron Microsc 48:849–864

    Article  Google Scholar 

  • Rossouw CJ, Miller PR (1999b) Location of Interstitial Cr in Mullite by Incoherent Channeling Patterns from Characteristic X-ray Emission. Am Mineral 84(5–6):965–969

    Article  Google Scholar 

  • Rossouw CJ, Forwood CT, Gibson MA, Miller PR (1996) Statistical ALCHEMI – General Formulation and Method With Application to Ti-Al Ternary Alloys. Philos Mag A 74:57–76

    Article  Google Scholar 

  • Sarosi PM, Hriljac JA, Jones IP (2003) Atom Location by Channelling-enhanced Microanalysis and the Ordering of Ti2AlNb. Philos Mag 83:4031–4044

    Article  Google Scholar 

  • Wilson AW, Howe JM (1999) Statistical ALCHEMI Study of the Site Occupancies of Ti and Cu in NiAl. Scripta Mater 41:327–331

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Jones .

Editor information

Editors and Affiliations

Appendix

Appendix

15.1.1 People

Since this is such a young field we decided not to highlight any particular historical characters.

15.1.2 Questions on Analyzing Data

The questions for this chapter are all in the form of exercises. The references for each question are listed on the book’s website.

Q15.1:

Shindo et al. (1986) reported the following X-ray counts from an ALCHEMI experiment in Ti43Al55 Nb2 using the {110} systematic row. What can you deduce about the Nb occupancy of the two sublattices (Al : A; T i: B)?

Ti43Al55Nb2

s < 0

s > 0

kin

R −/∞

R +/∞

Al K

54 154

51 713

47 139

1.149

1.097

Ti K

112 471

55 584

61 924

1.816

0.898

Nb L

6702

3275

3800

1.764

0.862

Ti/Al

2.080

1.070

1.310

  

Nb/Al

0.124

0.063

0.081

  

Nb/Ti

0.060

0.059

0.061

  
Q15.2:

Miyazaki et al. (1994) reported the following ALCHEMI data for 3 Ni3Al-Re alloys (110 systematic row). What can you conclude?

Ni75Al23Re2

s < 0

s > 0

kin

R −/∞

R +/∞

Al K

50 000

50 000

50 000

1.000

1.000

Ni K

346 577

302 348

338 567

1.024

0.893

Re M

4874

4471

4668

1.044

0.958

Ni/Al

6.93

6.05

6.77

  

Re/Al

0.097

0.089

0.093

  

Re/Ti

0.014

0.015

0.014

  

Ni74Al24Re2

s < 0

s > 0

kin

R −/∞

R +/∞

Al K

50 000

50 000

50 000

1.000

1.000

Ni K

386 035

317 837

347 658

1.110

0.914

Re M

1955

2071

1994

0.980

1.039

Ni/Al

7.72

6.36

6.95

  

Re/Al

0.039

0.041

0.040

  

Re/Ti

0.005

0.007

0.006

  

Ni73Al25Re2

s < 0

s > 0

kin

R −/∞

R +/∞

Al K

50 000

50 000

50 000

1.000

1.000

Ni K

353 685

279 999

267 209

1.324

1.048

Re M

4084

3977

4090

0.999

0.972

Ni/Al

7.07

5.60

5.34

  

Re/Al

0.082

0.079

0.082

  

Re/Ti

0.012

0.014

0.015

  
Q15.3:

The following intensity data from an ALCHEMI experiment on Ti47.5Al47.5Mn5 were reported by Holmestad et al. (1995). A 001 systematic row was used. Where are the Mn atoms?

Ti47.5Al47.5Mn5

s < 0

s > 0

kin

R −/∞

R +/∞

Al K

475.9

461.7

667.3

0.713

0.692

Ti K

1261.4

960.4

1834.1

0.688

0.524

Mn K

132.6

116.0

184.3

0.719

0.629

Ti/Al

2.65

2.08

2.75

  

Mn/Al

0.279

0.251

0.276

  

Mn/Ti

0.105

0.121

0.100

  
Q15.4:

Nakata et al. (1991) reported the following X-ray data collected during an ALCHEMI experiment using a {100} systematic row in B2 Ti48.5Ni48.5Co3. What can you deduce?

Ti48.5Ni48.5 Co3

s < 0

s > 0

kin

R −/∞

R +/∞

Ti K

53 993

50 803

53 086

1.017

0.957

Ni K

44 698

56 126

54 676

0.818

1.027

Co K

3303

4192

4036

0.818

1.039

Ni/Ti

0.828

1.105

1.030

  

Co/Ti

0.061

0.083

0.076

  

Co/Ni

0.074

0.075

0.074

  
Q15.5:

Gu et al. (1997) report the following for a {110} row in Ni73.9Al25.4Zr0.7. Comment on these results.

 

s < 0

s > 0

Al/Ni

0.273

0.179

Zr/Al

0.883

0.877

Zr/Ni

0.241

0.157

Q15.6:

The following table shows some of the results reported by Horita et al. (1995). Where does the Ta sit?

Ni75Al21Ta4

s < 0

s > 0

kin

R −/∞

R +/∞

Al K

15 590

14 060

15 201

1.026

0.925

Ni K

161 533

130 984

149 790

1.233

0.874

Ta M

10 840

9742

10 706

1.013

0.910

Ni/Al

10.4

9.3

9.9

  

Ta/Al

0.70

0.69

0.70

  

Ta/Ni

0.067

0.074

0.071

  
Q15.7:

The same group as in Q15.6 (but a different paper by Horita et al. (1997)) reported some axial channeling ALCHEMI results on the same alloy. What is the answer now?

Ni75Al21Ta4

Axial

kin

R ax/∞

Al K

2020

1746

1.157

Ni K

15 282

8843

1.728

Ta L

814

631

1.290

Ni/Al

7.57

5.06

 

Ta/Al

0.403

0.361

 

Ta/Ni

0.053

0.071

 
Q15.8:

Chen et al. (1990) reported the following NiK/AlK X-ray intensity ratios for Ni3Al. What do you deduce?

 

s < 0

kin

110

7.4

5.2

111

6.1

Q15.9:

Leonard et al. (2000) reported the following X-ray intensity ratios for the Nb50Ti25Al25 {100} B2 systematic row. What are the chemical compositions of the two sublattices?

Nb50Ti25Al25

s < 0

s > 0

kin

Al K/Nb L

0.288

0.427

0.384

Ti K/Nb L

0.625

0.515

0.585

Al K/Ti K

0.460

0.829

0.656

Q15.10:

Analyzing the B2 alloy Ti47V30Cr14Al10, Li et al. (1998) made the following ALCHEMI measurements. What can you say about the compositions of the two sublattices?

Ti47V30Cr14Al10

s < 0

s > 0

kin

Cr/Ti

0.282

0.283

0.268

Al/Ti

0.079

0.101

0.095

V/Ti

0.568

0.682

0.645

Al/V

0.140

0.148

0.147

Cr/V

0.496

0.414

0.416

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jones, I. (2016). Diffraction & X-Ray Excitation. In: Carter, C., Williams, D. (eds) Transmission Electron Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-319-26651-0_15

Download citation

Publish with us

Policies and ethics