Skip to main content

EFTEM

  • Chapter
  • First Online:
Transmission Electron Microscopy
  • 11k Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

General References

  • Egerton RF (2011) Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd edn. Springer Science & Business Media, New York (A classic text, primarily for EELS but is also of great use for EFTEM)

    Book  Google Scholar 

  • Grogger W, Varela M, Ristau R, Schaffer B, Hofer F, Krishnan KM (2005) J Electron Spectrosc Related Phenom 143:139–147 (A review article on EFTEM focusing on nanometer resolution)

    Article  Google Scholar 

  • Reimer L (1995) Energy-Filtering Transmission Electron Microscopy. Springer Series in Optical Sciences, vol. 71. Springer-Verlag, Berlin (This is a fine book with a number of chapters written by experts in the field of EELS and EFTEM)

    Google Scholar 

  • Sigle W (2005) Annu Rev Mater Res 35:239–314 (This is a long review article that deals with many of the topics covered in this chapter and some at a higher level.)

    Article  Google Scholar 

Specific References

  • Berger A, Kohl H (1993) Optimum imaging parameters for elemental mapping in an energy-filtering TEM. Optik 92:175–193

    Google Scholar 

  • Egerton RF, Crozier PA (1997) The effect of lens aberrations on the spatial resolution of energy-filtered TEM image. Micron 28:117–124

    Article  Google Scholar 

  • Gubbens AJ, Barfels M, Trevor C, Twesten R, Mooney P, Thomas PJ, Menon NK, Kraus B, Mao C, McGinn B (2010) The GIF Quantum, a next generation post-column imaging energy filter. Ultramicroscopy 110:962–970

    Article  Google Scholar 

  • Hofer F, Warbichler P, Grogger W (1995) Imaging nanometer-sized precipitates in solids by electron spectroscopic imaging. Ultramicroscopy 59:15–31

    Article  Google Scholar 

  • Hofer F, Grogger W, Kothleitner G, Warbichler P (1997) Quantitative analysis of EFTEM elemental distribution images. Ultramicroscopy 67:83–103

    Article  Google Scholar 

  • Hunt JA, Williams DB (1991) Electron energy-loss spectrum-imaging. Ultramicroscopy 38:47–73

    Article  Google Scholar 

  • Jeanguillaume C, Trebbia P, Colliex C (1978) About the use of electron energy-loss spectroscopy for chemical mapping of thin foils with high spatial resolution. Ultramicroscopy 3:237–242

    Article  Google Scholar 

  • Krivanek OL, Gubbens AJ, Dellby N (1991) Development in EELS instrumentation for spectroscopy and imaging. Microsc Microanal M2:315–332

    Article  Google Scholar 

  • Krivanek OL, Kundmann MK, Kimoto K (1995) Spatial resolution in EFTEM maps. J Microsc 180:277–287

    Article  Google Scholar 

  • Lavergne J, Martin J, Belin B (1992) Interactive electron energy-loss mapping by the “imaging-spectrum” method. Microsc Microanal M3:517–528

    Article  Google Scholar 

  • Leapman RD (1986) Microbeam Analysis 1986. In: Romig AD, Chambers WF (eds) Quantitative electron energy loss spectroscopy and elemental mapping in biology. San Francisco Press, San Francisco, pp 187–191

    Google Scholar 

  • Martin JMM, Vacher B, Ponsonnet L, Dupuis V (1996) Chemical bond mapping of carbon by image-spectrum EELS in the second derivative mode. Ultramicroscopy 65:229–238

    Article  Google Scholar 

  • Midgley PA, Saunders M (1996) Quantitative electron-diffraction – from atoms to bonds. Contemp Phys 37:441

    Article  Google Scholar 

  • Schaffer B, Grogger W, Kothleitner G (2004) Automated spatial drift correction for EFTEM image series. Ultramicroscopy 102:27–36

    Article  Google Scholar 

  • Schaffer B, Kothleitner G, Grogger W (2006) EFTEM spectrum imaging at high-energy resolution. Ultramicroscopy 106:1129–1138

    Article  Google Scholar 

  • Sigle W, Krämer S, Varshney V, Zern A, Eigenthaler U, Rühle M (2003) Plasmon energy mapping in energy-filtering transmission electron microscopy. Ultramicroscopy 96:565–571

    Article  Google Scholar 

  • Thomas PJ, Midgley PA (2001) Image-Spectroscopy 2: the Removal of Plural Scattering from Extended Energy-Filtered Series by Fourier Deconvolution Techniques. Ultramicroscopy 88:187–194

    Article  Google Scholar 

  • Walther T (2003) Electron energy-loss spectroscopic profiling of thin film structures: 0.39 nm line resolution and 0.04 eV precision measurement of near-edge structure shifts at interfaces. Ultramicroscopy 96:401–411

    Article  Google Scholar 

  • Watanabe M, Allen FI (2012) The SmartEFTEM-SI method: Development of a new spectrum imaging acquisition scheme for quantitative mapping by energy-filtering transmission electron microscopy. Ultramicroscopy 113:106–119

    Article  Google Scholar 

References for Further Reading

  • Ahn CC, Krivanek OL (1983). EELS Atlas, Gatan Inc., 780 Commonwealth Drive, Warrendale, PA 15086.

    Google Scholar 

  • Bazettjones DP, Ottensmeyer FP (1981) Phosphorus distribution in the nucleosome. Science 211:169–170

    Article  Google Scholar 

  • Berger A, Kohl H (1992) Elemental mapping using an imaging filter: image formulation and resolution limits. Microsc Microanal M(3):159–174

    Article  Google Scholar 

  • Berger A, Kohl H (1993) Optimum imaging parameters for elemental mapping in an energy-filtering TEM. Optik 92:175–193

    Google Scholar 

  • Blake DF, Freund F, Krishnan KFM, Echer CJ, Shipp R, Buch TE, Tielens AG, Lipari RJ, Hetherington CJD, Chang S (1988) The nature of interstellar diamond. Nature 332:611–613

    Article  Google Scholar 

  • Brink HA, Trevor C, Hunt J, Mooney PE (2000) A new high performance detector for electron energy loss spectroscopy. Microsc Microanal 6:212–213

    Google Scholar 

  • Brydson R, Sauer H, Engel W, Zeitler E (1991) EELS as a fingerprint of the chemical co-ordination of light elements. Microsc Microanal M(2):159–169

    Article  Google Scholar 

  • Cheng SC, Egerton RF (1985) Signal/background ratio of ionisation edges in EELS. Ultramicroscopy 16:279–282

    Article  Google Scholar 

  • Colliex C (1985) An illustrated review of various factors governing the high spatial resolution capabilities in EELS microanalysis. Ultramicroscopy 18:131–150

    Article  Google Scholar 

  • Colliex C, Jeanguillaume C (1989) Spectrum-image: the next step in EELS digital acquisition and processing. Ultramicroscopy 28:252–257

    Article  Google Scholar 

  • Crozier PA (1995) Practical limits on the spatial resolution in energy-filtered mapping. In: Bailey GW, Ellisan MH, Hennigar RA, Zaluzec NJ (eds) Proc Microsc Microanal, pp 304–305

    Google Scholar 

  • Crozier PA (1995) Quantitative elemental mapping of materials by energy-filtered imaging. Ultramicroscopy 58:157–174

    Article  Google Scholar 

  • Daniels J, Festenberg CV, Raether H, Zeppenfeld K (1970) Optical constants of solids by electron spectroscopy. Springer Tracts Modern Phys 54:78–135

    Google Scholar 

  • Egerton RF (1978) Formulae for light element analysis by electron energy loss spectrometry. Ultramicroscopy 3:243–251

    Article  Google Scholar 

  • Egerton RF (1979) K-shell ionization cross-sections for use in microanalysis. Ultramicroscopy 4:169–179

    Article  Google Scholar 

  • Egerton RF (1982) Principles and practice of quantitative electron energy-loss spectroscopy. In: Heinrich KFJ (ed) Microbeam Analysis. San Francisco Press, San Francisco

    Google Scholar 

  • Egerton RF (1991) Factors affecting the accuracy of elemental analysis by transmission EELS. Microsc Microanal M 2:203–213

    Article  Google Scholar 

  • Egerton RF (1997) The effect of objective-lens aberrations on EFTEM, STEM and SEM images. Inst Phys Conf Ser 153:149–154 (EMAG 97)

    Google Scholar 

  • Egerton RF, Crozier PA (1997) The effect of lens aberrations on the spatial resolution of energy-filtered TEM image. Micron 28:117–124

    Article  Google Scholar 

  • Gubbens AJ, Barfels M, Trevor C, Twesten R, Mooney P, Thomas PJ, Menon NK, Kraus B, Mao C, McGinn B (2010) The GIF Quantum, a next generation post-column imaging energy filter. Ultramicroscopy 110:962–970

    Article  Google Scholar 

  • Haking A, Troester H, Richter K, Crucifix C, Spring H, Trendelburg MF (1999) An approach to an objective background subtraction for elemental mapping with core-edges down to 50 eV: description, evaluation and application. Ultramicroscopy 80:163–182

    Article  Google Scholar 

  • Hofer F (1987) EELS quantification of M edges by using oxidic standards. Ultramicroscopy 21:63–68

    Article  Google Scholar 

  • Hofer F, Kothleitner G (1993) Quantitative microanalysis using electron energy loss spectrometry. I. Li and Be in oxides. Microsc Microanal M 4:539–560

    Article  Google Scholar 

  • Hofer F, Warbichler P (1996) Improved imaging of secondary phases in solids by energy-filtering TEM. Ultramicroscopy 63:21–25

    Article  Google Scholar 

  • Hofer F, Wilheim P (1993) EELS microanalysis of the elements Ca to Cu using M23edges. Ultramicroscopy 49:189–197

    Article  Google Scholar 

  • Hofer F, Golob P, Brunegger A (1988) EELS quantification of the elements Sr to W by means of M45edges. Ultramicroscopy 25:81–84

    Article  Google Scholar 

  • Hofer F, Grogger W, Kothleitner G, Warbichler P (1997) Quantitative analysis of EFTEM elemental distribution images. Ultramicroscopy 67:83–103

    Article  Google Scholar 

  • Hofer F, Warbichler P, Grogger W (1995a) Imaging nanometre-sized precipitates in solids by electron spectroscopic imaging. Ultramicroscopy 59:15–31

    Article  Google Scholar 

  • Hofer F, Warbichler P, Grogger W, Lang O (1995b) On the application of energy-filtering TEM in materials science: I. Precipitates in a Ni/Cr-alloy. Micron 26:377–390

    Article  Google Scholar 

  • Hunt JA, Williams DB (1991) Electron energy-loss spectrum-imaging. Ultramicroscopy 38:47–73

    Article  Google Scholar 

  • Isaacson M (1980) A poor man’s approach to semi-quantitative analysis with electron energy loss spectroscopy Proc 38th EMSA meeting., pp 110–111

    Google Scholar 

  • Jeanguillaume C, Trebbia P, Colliex C (1978) About the use of electron energy-loss spectroscopy for chemical mapping of thin foils with high spatial resolution. Ultramicroscopy 3:237–242

    Article  Google Scholar 

  • Johnson DE (1979) Energy-loss spectroscopy for biological research. Introduction to Analytical Electron Microscopy. Plenum Press, New York, pp 245–258

    Book  Google Scholar 

  • Joy DC, Maher DM (1981) The quantitation of electron energy loss spectra. J Microsc 124:37–48

    Article  Google Scholar 

  • Joy DC, Egerton RF, Maher DM (1979) Progress in the quantification of electron energy-loss spectra. In: O’Hare AMF (ed) Scanning Electron Microscopy. SEM Inc.,, Illinois, pp 817–826

    Google Scholar 

  • Joy DC, Romig AD, Goldstein JI (1986) Principles of analytical electron microscopy. Plenum Press, New York

    Book  Google Scholar 

  • Kohl H, Berger A (1995) The resolution limit for elemental mapping in energy-filtering transmission electron microscopy. Ultramicroscopy 59:191–194

    Article  Google Scholar 

  • Körtje KH (1994) Image-EELS: simultaneous recording of multiple electron energy-loss spectra from series of spectroscopic images. J Microsc 174:149–159

    Article  Google Scholar 

  • Kothleitner G, Hofer F (1998) Optimisation of the signal to noise ratio in EFTEM elemental maps with regard to different ionisation edge types. Micron 29:349–357

    Article  Google Scholar 

  • Krivanek OL, Mooney PE (1993) Applications of slow-scan CCD cameras in TEM. Ultramicroscopy 49:95–108

    Article  Google Scholar 

  • Krivanek OL, Gubbens AJ, Dellby N (1991) Development in EELS instrumentation for spectroscopy and imaging. Microsc Microanal M 2:315–332

    Article  Google Scholar 

  • Krivanek OL, Gubbens AJ, Dellby N, Meyer C (1992) Design and first applications of a post-column imaging filter. Microsc Microanal M 3:187–199

    Article  Google Scholar 

  • Krivanek OL, Gubbens AJ, Kundmann MK, Carpenter GC (1993) Elemental mapping with an energy-selecting imaging filter. In: 51st Proc EMSA, pp 586–587

    Google Scholar 

  • Krivanek OL, Kundmann MK, Kimoto K (1995) Spatial resolution in EFTEM maps. J Microsc 180:277–287

    Article  Google Scholar 

  • Lanio S, Rose H, Krahl D (1986) Test and improved design of a corrected imaging magnetic energy filter. Optik 73:56–68

    Google Scholar 

  • Lavergne J, Martin J, Belin B (1992) Interactive electron energy-loss mapping by the “imaging-spectrum” method. Microsc Microanal M 3:517–528

    Article  Google Scholar 

  • Lavergne JL, Foa C, Bongrand P, Seux D, Martin JM (1994) Application of recording and processing of energy-filtered image sequences for the elemental mapping of biological specimens: Imaging-spectrum. J Microsc 174:195–206

    Article  Google Scholar 

  • Leapman RD (1986) Quantitative electron energy loss spectroscopy and elemental mapping in biology. In: Romig AD, Chambers WF (eds) Microbeam Analysis 1986. San Francisco Press, San Francisco, pp 187–191

    Google Scholar 

  • Leapman RD, Hunt JA (1991) Comparison of detection limits for EELS and EDXS. Micros Microanal M 2:231–244

    Article  Google Scholar 

  • Leapman RF, Hunt JA (1995) Compositional imaging with electron energy-loss spectroscopy. J Microsc Soc America 3:93

    Google Scholar 

  • Leapman RD, Swyt CR (1983) Electron energy-loss imaging in the STEM: systematic and statistical errors. In: Gooley R (ed) Microbeam Analysis 1983. San Francisco Press, San Francisco

    Google Scholar 

  • Leapman RD, Swyt CR (1988) Separation of overlapping core edges in electron energy loss spectra by multiple – least-squares fitting. Ultramicroscopy 26:393–404

    Article  Google Scholar 

  • Liang WY, Beal AR (1976) A study of the optical joint density-of-states function. J Phys C 9:2823–2832

    Article  Google Scholar 

  • Liu D-R, Brown LM (1987) Influence of some practical factors on background extrapolation in EELS quantification. J Microsc 147:37–49

    Article  Google Scholar 

  • Malis T, Tichmarsh JM (1985) A k-factor approach to EELS analysis. Inst Phys Conf Ser 78:181–182

    Google Scholar 

  • Malis T, Cheng SC, Egerton RF (1988) EELS log-ratio technique for specimen measurement in the TEM. J Electron Microsc Techniq 8:193–199

    Article  Google Scholar 

  • Marien J, Plitzko JM, Spolenak R, Keller RM, Mayer J (1998) Quantitative electron spectroscopic imaging studies of microelectronic metallization of layers. J Microsc 194:71–78

    Article  Google Scholar 

  • Martin JM, Lavergne JL, Vacher B, Inoue K (1995) Interactive image-spectrum EELS: Application to elemental mapping of lubricant colloids. Microsc Microanal M 6:53–63

    Article  Google Scholar 

  • Martin JMM, Vacher B, Ponsonnet L, Dupuis V (1996) Chemical bond mapping of carbon by image-spectrum EELS in the second derivative mode. Ultramicroscopy 65:229–238

    Article  Google Scholar 

  • Mayer J, Plitzko JM (1995) Mapping of ELNES on a nanometre scale by electron spectroscopic imaging. J Micros 183:2–8

    Article  Google Scholar 

  • Mayer J, Eigenthaler U, Plitzko JM, Dettenwanger F (1997) Quantitative analysis of electron spectroscopic imaging series. Micron 28:361–370

    Article  Google Scholar 

  • Meyer RR, Kirkland AI (1998) The effect of electron and photon scattering on signal and noise transfer properties of scintillators in CCD cameras used for electron detection. Ultramicroscopy 75:23–33

    Article  Google Scholar 

  • Midgley PA (1999) A simple new method to obtain high angular resolution ω–q patterns. Ultramicroscopy 76:91–96

    Article  Google Scholar 

  • Midgley PA, Saunders M (1996) Quantitative electron-diffraction – from atoms to bonds. Contemp Phys 37:441

    Article  Google Scholar 

  • Otenmeyer FP, Andrew JW (1980) High-resolution Microanalysis of Biological Specimens by electron energy loss spectroscopy and by electron spectroscopic imaging. J Ultrastruct Res 72:336–348

    Article  Google Scholar 

  • Otten MT (1993) Schottky versus cold field emission. Philips Electron Optics Special Bulletin. Philips, Eindhoven, pp 4–7

    Google Scholar 

  • Özkaya D, Yuan J, Brown LM, Flewitt PEJ (1995) Segregation-induced hole drilling at grain boundaries. J Microsc 180:300–306

    Article  Google Scholar 

  • Pearson DH, Ahn CC, Fultz B (1993) White lines and d-electron occupancies for the 3d and 4d transition metals. Phys Rev 47:8471–8477

    Article  Google Scholar 

  • Pennycook SJ (1982) High resolution electron microscopy and microanalysis. Contemp Phys 59:371–400

    Article  Google Scholar 

  • Plitzko JM, Mayer J (1996) Mapping of ELNES on a nanometre scale by electron spectroscopic-imaging. J Microsc 183:2–8

    Article  Google Scholar 

  • Plitzko JM, Mayer J (1999) Quantitative thin film analysis by energy-filtering transmission electron microscopy. Ultramicroscopy 78:207–219

    Article  Google Scholar 

  • Pun T, Ellis JR, Eden M (1984) Optimized acquisition parameters and statistical detection limit in quantitative EELS. J Microsc 135:295–316

    Article  Google Scholar 

  • Van Puymbroeck J, Jacob W, Van Espen P (1992) Methodology for spectrum evaluation in quantitative electron energy-loss spectrometry using the Zeiss CEM902. J Microsc 166:273–286

    Article  Google Scholar 

  • Reimer L (1995) Energy-Filtering Transmission Electron Microscopy. Springer Series in Optical Sciences, vol. 71. Springer, Berlin

    Google Scholar 

  • Reimer L (1998) Energy-filtering imaging and diffraction. Mater Trans 39:873–882

    Article  Google Scholar 

  • Rez P (1982) Cross-sections for energy loss spectroscopy. Ultramicroscopy 9:283–288

    Article  Google Scholar 

  • Rez P (1989) Inner-shell spectroscopy: an atomic view. Ultramicroscopy 28:16–23

    Article  Google Scholar 

  • Rez P, Weng X, Ma H (1991) The interpretation of near-edge structure. Microsc Microanal M2:143–151

    Article  Google Scholar 

  • Rez P, Bruley J, Brohan P, Payne M, Garvie LAJ (1995) Review of Methods for calculating near-edge structure. Ultramicroscopy 59:159–167

    Article  Google Scholar 

  • De Ruijter WJ (1995) Imaging properties and applications of slow-scan charge-coupled device cameras suitable for electron microscopy. Micron 26:247–275

    Article  Google Scholar 

  • Schaffer B, Grogger W, Kothleitner G (2004) Automated spatial drift correction for EFTEM image series. Ultramicroscopy 102:27–36

    Article  Google Scholar 

  • Schaffer B, Kothleitner G, Grogger W (2006) EFTEM spectrum imaging at high-energy resolution. Ultramicroscopy 106:1129–1138

    Article  Google Scholar 

  • Schaffer B, Hohenester U, Trügler A, Hofer F (2009) High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy. Phys Rev B 79:041401

    Article  Google Scholar 

  • Schweitz KO, Ratzke K, Foord D, Thomas PJ, Greer AL, Geisler H, Chevallier J, Bottiger J (2000) The microstructural development of Ag/Ni multilayers during annealing. Philos Mag A 80:1867–1877

    Article  Google Scholar 

  • Scott J, Thomas PJ, MacKenzie M, McFadzean S, Wilbrink J, Craven AJ, Nicholson WAP (2008) Near-simultaneous dual energy range EELS spectrum imaging. Ultramicroscopy 108:1586–1594

    Article  Google Scholar 

  • Sigle W, Krämer S, Varshney V, Zern A, Eigenthaler U, Rühle M (2003) Plasmon energy mapping in energy-filtering transmission electron microscopy. Ultramicroscopy 96:565–571

    Article  Google Scholar 

  • Thomas PJ, Midgley PA (2001) Image-Spectroscopy I: The Advantages of Increased Spectral Information for Compositional EFTEM Analysis. Ultramicroscopy 88:179–186

    Article  Google Scholar 

  • Thomas PJ, Midgley PA (2001) Image-Spectroscopy 2: the Removal of Plural Scattering from Extended Energy-Filtered Series by Fourier Deconvolution Techniques. Ultramicroscopy 88:187–194

    Article  Google Scholar 

  • Thomas PJ, Midgley PA, Spellward P (1999). Compositional mapping in the EFTEM using Image-Spectroscopy. Inst Phys Conf Ser (EMAG 99).

    Google Scholar 

  • Trebbia P, Bonnet N (1990) EELS elemental mapping with unconventional methods I. Theoretical basis: image analysis with multivariate statistics and entropy concepts. Ultramicroscopy 34:165–178

    Article  Google Scholar 

  • Walther T (2003) Electron energy-loss spectroscopic profiling of thin film structures: 0.39 nm line resolution and 0.04 eV precision measurement of near-edge structure shifts at interfaces. Ultramicroscopy 96:401–411

    Article  Google Scholar 

  • Warbichler P, Hofer F, Hofer P, Lotofsky E (1998) On the application of energy-filtering TEM in materials science: III. Precipitates in steel. Micron 29:63–72

    Article  Google Scholar 

  • Weikenmeier AL, Nüchter W, Mayer J (1995) Quantitative characterisation of point spread function and detection quantum efficiency for a YAG scintillator slow scan CCD camera. Optik 99:147–154

    Google Scholar 

  • Williams DB, Edington JW (1976) High resolution microanalysis in materials science using electron energy loss measurements. J Microsc 108:113–145

    Article  Google Scholar 

  • Wooten F (1972) Optical properties of solids. Academic Press, New York

    Google Scholar 

  • Zanchizx G, Kihn Y, Sevely J (1982) On aberration effects in the chromatic plane of the Omega-filter. Optik 60:427–436

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Thomas .

Editor information

Editors and Affiliations

Appendix

Appendix

13.1.1 Self-Assessment Questions

Q13.1:

What advantage(s) does zero-loss imaging have over regular bright field imaging in the TEM?

Q13.2:

What differences are there between three-window elemental mapping and jump-ratio imaging of a core-loss edge? Which should be used for quantitative mapping?

Q13.3:

Why is the microscope high tension used to perform EFTEM at an energy loss?

Q13.4:

In addition to thickness, what other physical properties from the specimen affect the intensity in a t/λ map?

Q13.5:

What effect does increasing the energy-selecting slit width have on i) the spatial resolution and ii) the recorded signal have when performing core-loss imaging?

Q13.6:

Why is an objective aperture inserted for EFTEM imaging?

Q13.7:

What advantages does EFTEM-SI offer over simple two- or three-window EFTEM mapping?

Q13.8:

What effect does diffraction-contrast have on EFTEM core-loss maps? What steps can be taken to reduce these effects?

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Thomas, P., Midgley, P. (2016). EFTEM. In: Carter, C., Williams, D. (eds) Transmission Electron Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-319-26651-0_13

Download citation

Publish with us

Policies and ethics