Skip to main content

Optimal Approximation Algorithms for Maximum Distance-Bounded Subgraph Problems

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9486))

Abstract

A d-clique in a graph \(G = (V, E)\) is a subset \(S\subseteq V\) of vertices such that for pairs of vertices \(u, v\in S\), the distance between u and v is at most d in G. A d-club in a graph \(G = (V, E)\) is a subset \(S'\subseteq V\) of vertices that induces a subgraph of G of diameter at most d. Given a graph G with n vertices, the goal of Max d-Clique (Max d-Club, resp.) is to find a d-clique (d-club, resp.) of maximum cardinality in G. Max 1-Clique and Max 1-Club cannot be efficiently approximated within a factor of \(n^{1-\varepsilon }\) for any \(\varepsilon > 0\) unless \(\mathcal{P} = \mathcal{NP}\) since they are identical to Max Clique [14, 21]. Also, it is known [3] that it is \(\mathcal{NP}\)-hard to approximate Max d-Club to within a factor of \(n^{1/2 - \varepsilon }\) for any fixed \(d\ge 2\) and for any \(\varepsilon > 0\). As for approximability of Max d-Club, there exists a polynomial-time algorithm which achieves an optimal approximation ratio of \(O(n^{1/2})\) for any even \(d\ge 2\) [3]. For any odd \(d\ge 3\), however, there still remains a gap between the \(O(n^{2/3})\)-approximability and the \(\varOmega (n^{1/2-\varepsilon })\)-inapproximability for Max d-Club [3]. In this paper, we first strengthen the approximability result for Max d-Club; we design a polynomial-time algorithm which achieves an optimal approximation ratio of \(O(n^{1/2})\) for Max d-Club for any odd \(d\ge 3\). Then, by using the similar ideas, we show the \(O(n^{1/2})\)-approximation algorithm for Max d-Clique on general graphs for any \(d\ge 2\). This is the best possible in polynomial time unless \(\mathcal{P} = \mathcal{NP}\), as we can prove the \(\varOmega (n^{1/2-\varepsilon })\)-inapproximability. Furthermore, we study the tractability of Max d-Clique and Max d-Club on subclasses of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agnarsson, G., Greenlaw, R., Halldórsson, M.M.: On powers of chordal graphs and their colorings. Congr. Numer. 144, 41–65 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Alba, R.: A graph-theoretic definition of a sociometric clique. J. Math. Sociol. 3, 113–126 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asahiro, Y., Miyano, E., Samizo, K.: Approximating maximum diameter-bounded subgraphs. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 615–626. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Balakrishnan, R., Paulraja, P.: Powers of chordal graphs. Aust. J. Math. Ser. A 35, 211–217 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brandstädt, A., Dragan, F.F., Xiang, Y., Yan, C.: Generalized powers of graphs and their algorithmic use. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 423–434. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey. In: SIAM (1999)

    Google Scholar 

  7. Chang, M.-S., Hung, L.-J., Lin, C.-R., Su, P.-C.: Finding large \(k\)-clubs in undirected graphs. Computing 95, 739–758 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Corneil, D.G., Kamula, P.A.: Extensions of permutation and interval graphs. Congr. Number. 58, 267–275 (1987)

    MathSciNet  MATH  Google Scholar 

  9. Erdös, P., Pach, J., Pollack, R., Tuza, Z.: Radius, diameter, and minimum degree. J. Combin. Theor. Ser. B 47, 73–79 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Felsner, S., Müller, R., Wernisch, L.: Trapezoid graphs and generalization, geometry and algorithms. Discrete Appl. Math. 74(1), 13–32 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Flotow, C.: On powers of \(m\)-trapezoid graphs. Discrete Appl. Math. 63(2), 187–192 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM J. Comput. 1(2), 180–187 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. Golovach, P.A., Heggernes, P., Kratsch, D., Rafiey, A.: Finding clubs in graph classes. Discrete Appl. Math. 174, 57–65 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Håstad, J.: Clique is hard to approximate within \(n^{1-\varepsilon }\). Acta Math. 182(1), 105–142 (1999)

    Article  MathSciNet  Google Scholar 

  15. Hayward, R., Hoáng, C., Maffray, F.: Optimizing weakly triangulated graphs. Graphs Comb. 5, 339–349 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lubiw, A.: \(\Gamma \)-free matrices. Masters thesis, Department of Combinatorics and Optimization, University of Waterloo, Canada (1982)

    Google Scholar 

  17. Marinček, J., Mohar, B.: On approximating the maximum diameter ratio of graphs. Discrete Math. 244, 323–330 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mokken, R.J.: Cliques, clubs and clans. Qual. Quant. 13, 161–173 (1979)

    Article  Google Scholar 

  19. Pajouh, F.M., Balasundaram, B.: On inclusionwise maximal and maximum cardinality \(k\)-clubs in graphs. Discrete Optim. 9, 84–97 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schäfer, A., Komusiewicz, C., Moser, H., Niedermeier, R.: Parameterized computational complexity of finding small-diameter subgraphs. Optim. Lett. 6(5), 883–891 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theor. Comput. 3, 103–128 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is partially supported by KAKENHI grant numbers 25330018 and 26330017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Miyano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Asahiro, Y., Doi, Y., Miyano, E., Shimizu, H. (2015). Optimal Approximation Algorithms for Maximum Distance-Bounded Subgraph Problems. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, DZ. (eds) Combinatorial Optimization and Applications. Lecture Notes in Computer Science(), vol 9486. Springer, Cham. https://doi.org/10.1007/978-3-319-26626-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26626-8_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26625-1

  • Online ISBN: 978-3-319-26626-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics