Skip to main content

Bayesian Ridge Estimation of Age-Period-Cohort Models

  • Chapter
  • First Online:
Dynamic Demographic Analysis

Part of the book series: The Springer Series on Demographic Methods and Population Analysis ((PSDE,volume 39))

Abstract

Age-Period-Cohort (APC) analysis offers a framework to study trends in the three temporal dimensions underlying age by period tables. However, the perfect linear relationship among age, period, and cohort leads to a well-known identification issue due perfect colinearity from the identity Cohort = Period − Age. A number of methods have been proposed to deal with this identification issue, e.g., the intrinsic estimator (IE), which may be viewed as a limiting form of ridge regression. Bayesian regression offers an alternative approach to modeling tabular age, period, cohort data. This study views the ridge estimator from a Bayesian perspective by introducing prior distributions for the ridge parameters, which permits these parameters to be estimated jointly with the substantive parameters rather than being assigned (and fixed) a-priori. Results show that a Bayesian ridge model with a common prior for the ridge parameter yields estimated age, period, and cohort effects similar to those based on the intrinsic estimator and to those based on a conventional ridge estimator with a shrinkage penalty obtained from cross-validation. The performance of Bayesian models with distinctive priors for the ridge parameters of age, period, and cohort effects is, however, affected by the choice of prior distributions. Further investigation of the influence of the choice of prior distributions is therefore warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Suzuki (2012) provides insight into the nature, conceptualization, and meaning of the underlying temporal dimensions.

  2. 2.

    Identification may be less an issue using a Bayesian approach where inference is carried out using simulation, as opposed to the traditional numerical methods using least squares.

  3. 3.

    This implies that last category effects are: \( {\alpha}_a=-{\displaystyle \sum_{i=1}^{a-1}{\alpha}_i} \), \( {\beta}_p=-{\displaystyle \sum_{j=1}^{p-1}}{\beta}_j \), and \( {\gamma}_{a+p-1}=-{\displaystyle \sum_{k=1}^{a+p-2}}{\gamma}_k \). The Bayesian approach adopted here makes it straightforward to monitor these quantities along with the other parameters of interest.

  4. 4.

    Variance components in Bayesian models are typically parameterized in terms of precision, i.e., \( {\sigma}^{-2} \) rather than variance σ 2.

  5. 5.

    Keyes et al. (2010) provide an application to APC modeling and a useful comparison with other methods.

References

  • Arraiz, G. A., Wigle, D. T., & Mao, Y. (1990). Is cervical cancer increasing among young women in Canada? Canadian Journal of Public Health, 81, 396–397.

    Google Scholar 

  • Baker, A., & Bray, I. (2005). Bayesian projections: What are the effects of excluding data from younger age groups? American Journal of Epidemiology, 162, 798–805.

    Article  Google Scholar 

  • Berzuini, C., Clayton, D., & Bernardinelli, L. (1994). Bayesian inference on the Lexis diagram. Bulletin of the International Statistical Institute, 55, 149–164.

    Google Scholar 

  • Browning, M., Crawford, I., & Knoef, M. (2012). The age-period cohort problem: Set identification and point identification (CEMMAP working paper CWP02/12). Retrieved from http://dx.doi.org/10.1920/wp.cem.2012.0212

  • Casella, G., & George, E. I. (1992). Explaining the Gibbs sampler. The American Statistician, 46, 167–174.

    Google Scholar 

  • Congdon, P. (2006). Bayesian statistical modelling (Wiley series in probability and statistics). doi:10.1002/9780470035948.

  • Draper, N. R., & Smith, H. (1981). Applied regression analysis (2nd ed.). New York: Wiley.

    Google Scholar 

  • Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The Annals of Statistics, 32(2), 407–499.

    Google Scholar 

  • Fienberg, S. E., & Mason, W. M. (1979). Identification and estimation of Age-Period-Cohort models in the analysis of discrete archival data. Sociological Methodology, 10, 1–67. doi:10.2307/270764.

    Article  Google Scholar 

  • Fu, W. J. (2000). Ridge estimator in singular design with application to age-period-cohort analysis of disease rates. Communications in Statistics Theory and Methods, 29, 263–278. doi:10.1080/03610920008832483.

    Article  Google Scholar 

  • Fu, W. J., & Hall, P. (2006). Asymptotic properties of estimators in age-period-cohort analysis. Statistics and Probability Letters, 76, 1925–1929. doi:10.1016/j.spl.2006.04.051.

    Article  Google Scholar 

  • Fu, W. J., Hall, P., & Rohan, T. (2003). Age-period-cohort analysis: Structure of estimators, estimability, sensitivity and asymptotics. Technical Report, Department of Epidemiology, Michigan State University, East Lansing.

    Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., Runson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (3rd ed.). Boca Raton: Chapman and Hall/CRC.

    Google Scholar 

  • Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.

    Article  Google Scholar 

  • Glenn, N. D. (1976). Cohort analysts’ futile quest: Statistical attempts to separate age, period and cohort effects. American Sociological Review, 41, 900–904.

    Article  Google Scholar 

  • Glenn, N. D. (2005). Cohort analysis (2nd ed.). Thousand Oaks: Sage.

    Book  Google Scholar 

  • Golub, G. H., Heath, M., & Wahba, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 21, 215–223.

    Article  Google Scholar 

  • Hoerl, A. E. (1962). Application of ridge analysis to regression problems. Chemical Engineering Progress, 58, 54–59.

    Google Scholar 

  • Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for non-orthogonal problems. Technometrics, 12, 55–67.

    Article  Google Scholar 

  • Hsiang, T. C. (1975). A Bayesian view on ridge regression. The Statistician, 24, 267–268. doi:10.2307/2987923.

    Article  Google Scholar 

  • Keyes, K. M., Utz, R. L., Robinson, W., & Li, G. (2010). What is a cohort effect? Comparison of three statistical methods for modeling cohort effects in obesity prevalence in the United States, 1971–2006. Social Science and Medicine, 70, 1100–1108.

    Article  Google Scholar 

  • Knorr-Held, L., & Rainer, E. (2001). Projections of lung cancer mortality in West Germany: A case study in Bayesian prediction. Biostatistics, 2, 109–129.

    Article  Google Scholar 

  • Kupper, J. J., & Janis, J. M. (1980). The multiple classification model in age, period, and cohort analysis: Theoretical considerations (Institute of Statistics Mimeo No. 1311). Chapel Hill: Department of Biostatistics University of North Carolina.

    Google Scholar 

  • Kupper, J. J., Janis, J. M., Karmous, A., & Greenberg, B. G. (1985). Statistical age-period-cohort analysis: A review and critique. Journal of Chronic Disease, 38, 811–830.

    Article  Google Scholar 

  • Marquardt, D. W. (1970). Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics, 12, 591–612. doi:10.2307/1267205.

    Article  Google Scholar 

  • Mason, W. M., & Wolfinger, N. H. (2001). Cohort analysis. International Encyclopedia of the Social and Behavioral Sciences, 2189–2194. doi:10.1016/b0-08-043076-7/00401-0.

    Google Scholar 

  • Mason, K. O., Mason, W. M., Winsborough, H. H., & Poole, W. K. (1973). Some methodological issues in cohort analysis of archival data. American Sociological Review, 38, 242–258. doi:10.2307/2094398.

    Article  Google Scholar 

  • Mosteller, F., & Tukey, J. W. (1977). Data analysis and regression. Reading: Addison-Wesley.

    Google Scholar 

  • O’Brien, R. M., Hudson, K., & Stockard, J. (2008). A mixed model estimation of age, period, and cohort effects. Sociological Methods & Research, 36, 402–428.

    Article  Google Scholar 

  • Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rd International Workshop on Distributed Statistical Computing. Retrieved from http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

  • Plummer, M. (2014). rjags: Bayesian graphical models using MCMC. R package version 3-13. http://CRAN.R-project.org/package=rjags

  • R Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Schmid, V. J., & Held, L. (2007). Bayesian age-period-cohort modeling and prediction – BAMP. Journal of Statistical Software, 21(8), 1–15.

    Article  Google Scholar 

  • Suzuki, E. (2012). Time changes, so do people. Social Science and Medicine, 75, 452–456.

    Article  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, Series B, 58(1), 267–288.

    Google Scholar 

  • Tu, Y. K., Smith, G. D., & Gilthorpe, M. S. (2011). A new approach to age-period-cohort analysis using partial least squares: The trend in blood pressure in Glasgow Alumni Cohort. Plos One, 6(4), e19401. 1371/journal.pone. 001901.

    Article  Google Scholar 

  • Tu, Y. K., Kramer, N., & Lee, W. (2013). Addressing the identification problem in age-period-cohort analysis: A tutorial on the use of partial least squares and principle components analysis. Epidemiology, 23, 583–593.

    Article  Google Scholar 

  • Tukey, J. W. (1977). Exploratory data analysis. Reading: Addison-Wesley.

    Google Scholar 

  • Vizcaino, A. P., Moreno, V., Bosch, F. X., Munoz, N., Barros-Dios, X. M., & Parkin, D. M. (1998). International trends in the incidence of cervical cancer I: Adenocarcinoma and adenosquamous cell carcinomas. International Journal of Cancer, 75, 536–545.

    Article  Google Scholar 

  • Yang, Y., & Land, K. C. (2008). Age-period-cohort analysis of repeated cross-section surveys: Fixed or random effects? Sociological Methods and Research, 36, 297–326. doi:10.1177/0049124106292360.

    Article  Google Scholar 

  • Yang, Y., & Land, K. C. (2013). Age-period-cohort analysis. Chapman & Hall/CRC Interdisciplinary Statistics Series. doi:10.1201/b13902.

  • Yang, Y., Fu, W. J., & Land, K. C. (2004). A methodological comparison of age-period-cohort models: The intrinsic estimator and conventional generalized linear models. Sociological Methodology, 34, 75–110. doi:10.1111/j.0081-1750.2004.00148.x.

    Article  Google Scholar 

  • Yang, Y., Schulehoffer-Wohl, S., Fu, W. J., & Land, K. C. (2008). The intrinsic estimator for age-period-cohort analysis: What it is and how to use it. American Journal of Sociology, 113, 1697–1736.

    Article  Google Scholar 

  • Zheng, T., Hofford, T. R., Ma, Z., Chen, Y., Liu, W., Ward, B. A., & Boyle, P. (1996). The continuing increase in adenocarcinoma of the uterine cervix: A birth cohort phenomenon. International Journal of Epidemiology, 25, 252–258.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minle Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xu, M., Powers, D.A. (2016). Bayesian Ridge Estimation of Age-Period-Cohort Models. In: Schoen, R. (eds) Dynamic Demographic Analysis. The Springer Series on Demographic Methods and Population Analysis, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-319-26603-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26603-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26601-5

  • Online ISBN: 978-3-319-26603-9

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics