Skip to main content

Statistical Modelling of Artificial Neural Network for Sorting Temporally Synchronous Spikes

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9491))

Included in the following conference series:

Abstract

Artificial neural network (ANN) models are able to predict future events based on current data. The usefulness of an ANN lies in the capacity of the model to learn and adjust the weights following previous errors during training. In this study, we carefully analyse the existing methods in neuronal spike sorting algorithms. The current methods use clustering as a basis to establish the ground truths, which requires tedious procedures pertaining to feature selection and evaluation of the selected features. Even so, the accuracy of clusters is still questionable. Here, we develop an ANN model to specially address the present drawbacks and major challenges in neuronal spike sorting. New enhancements are introduced into the conventional backpropagation ANN for determining the network weights, input nodes, target node, and error calculation. Coiflet modelling of noise is employed to enhance the spike shape features and overshadow noise. The ANN is used in conjunction with a special spiking event detection technique to prioritize the targets. The proposed enhancements are able to bolster the training concept, and on the whole, contributing to sorting neuronal spikes with close approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Quiroga, R.Q.: Concept cells: the building blocks of declarative memory functions. Nature Rev. Neurosci. 13(8), 587–597 (2012)

    Google Scholar 

  2. Mussa-Ivaldi, F.A., Miller, L.E.: Brain machine interfaces: computational demands and clinical needs meet basic neuroscience. Trends Neurosci. 26(6), 329–334 (2003)

    Article  Google Scholar 

  3. Sahani, M., Pezaris, J.S., Andersen, R.A.: On the separation of signals from neighboring cells in tetrode recordings. In: Advances in Neural Information Processing Systems 10, pp. 222–228. MIT Press (1998)

    Google Scholar 

  4. Gothard, K.M., Skaggs, W.E., McNaughton, B.L.: Dynamics of mismatch correction in the hippocampal ensemble code for space: interaction between path integration and environmental cues. J. Neurosci. 16(24), 8027–8040 (1996)

    Google Scholar 

  5. Harris, K.D., Henze, D.A., Csicsvari, J., Hirase, H., Buzsáki, G.: Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J. Neurophysiol. 84(1), 401–414 (2000)

    Google Scholar 

  6. Reinhard, K., Tikidji-Hamburyan, A., Seitter, H., Idrees, S., Mutter, M., Benkner, B., Munch, T.A.: Step-by-step instructions for retina recordings with perforated multi electrode arrays. PLoS ONE 9(8), e106148 (2014)

    Article  Google Scholar 

  7. Wang, Y., Yeung, C.-K., Ingebrandt, S., Offenhaeusser, A., Chan, M.: Multi-electrode arrays (meas) with guided network for cell-to-cell communication transduction. In: IEEE International Electron Devices Meeting, IEDM Technical Digest, p. 3, p. 484, December 2005

    Google Scholar 

  8. Pfeffer, L., Ide, D., Stewart, C., Plenz, D.:. A life support system for stimulation of and recording from rodent neuron networks grown on multi-electrode arrays. In: Proceedings of the 17th IEEE Symposium on Computer-Based Medical Systems, CBMS 2004, pp. 473–478, June 2004

    Google Scholar 

  9. Hottowy, P., Beggs, J.M., Chichilnisky, E.J., Dabrowski, W., Fiutowski, T., Gunning, D.E., Hobbs, J., Jepson, L., Kachiguine, S., Mathieson, K., et al.: 512-electrode mea system for spatio-temporal distributed stimulation and recording of neural activity. In: Stett, A. (ed.) Proceedings of the 7th International Meeting on Substrate-Integrated Microelectrode Arrays, Reutlingen, Germany, pp. 327–330, June 2010

    Google Scholar 

  10. Gaburro, J., Duchemin, J.-B., Bhatti, A., Walker, P., Nahavandi, S.: Neurophysiology of insects using microelectrode arrays: current trends and future prospects. In: Loo, C.K., Yap, K.S., Wong, K.W., Beng Jin, A.T., Huang, K. (eds.) ICONIP 2014, Part III. LNCS, vol. 8836, pp. 493–500. Springer, Heidelberg (2014)

    Google Scholar 

  11. Henze, D.A., Harris, K.D., Borhegyi, Z., Csicsvari, J., Mamiya, A., Hirase, H., Sirota, A., Buzsáki, G.: Simultaneous intracellular and extracellular recordings from hippocampus region ca1 of anesthetized rats (2009)

    Google Scholar 

  12. Henze, D.A., Borhegyi, Z., Csicsvari, J., Mamiya, A., Harris, K.D., Buzsáki, G.: Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol. 84(1), 390–400 (2000)

    Google Scholar 

  13. Prentice, J.S., Homann, J., Simmons, K.D., Tkacik, G., Balasubramanian, V., Nelson, P.C.: Fast, scalable, bayesian spike identification for multi-electrode arrays. PLoS ONE 6(7), e19884 (2011)

    Article  Google Scholar 

  14. Hulata, E., Segev, R., Ben-Jacob, E.: A method for spike sorting and detection based on wavelet packets and shannon’s mutual information. J. Neurosci. 117, 1–12 (2002)

    Google Scholar 

  15. Platkiewicz, J., Brette, R.: A threshold equation for action potential initiation. PLoS Comput. Biol. 6(7), e1000850 (2010)

    Article  MathSciNet  Google Scholar 

  16. Marre, O., Amodei, D., Deshmukh, N., Sadeghi, K., Soo, F., Holy, T.E., Berry, M.J.: Mapping a complete neural population in the retina. J. Neurosci. 32(43), 14859–14873 (2012)

    Article  Google Scholar 

  17. Ekanadham, C., Tranchina, D., Simoncelli, E.P.: A unified framework and method for automatic neural spike identification. J. Neurosci. Meth. 222, 47–55 (2014)

    Article  Google Scholar 

  18. Pillow, J.W., Shlens, J., Chichilnisky, E.J., Simoncelli, E.P.: A model-based spike sorting algorithm for removing correlation artifacts in multi-neuron recordings. PLoS ONE 8(5), e62123 (2013)

    Article  Google Scholar 

  19. Shahid, S., Walker, J., Smith, L.S.: A new spike detection algorithm for extracellular neural recordings. IEEE Trans. Biomed. Eng. 57(4), 853–866 (2010)

    Article  Google Scholar 

  20. Robert Gordon University. The back propogation algorithm. http://www4.rgu.ac.uk/files/chapter3%20-%20bp.pdf

  21. Pouzat, C., Mazor, O., Laurent, G.: Using noise signature to optimize spike-sorting and to assess neuronal classification quality. J. Neurosci. Meth. 122(1), 43–57 (2002)

    Article  Google Scholar 

  22. Smith, L.S., Mtetwa, N.: A tool for synthesizing spike trains with realistic interference. J. Neurosci. Meth. 159(1), 170–180 (2007)

    Article  Google Scholar 

  23. Robert Gordon University. Aritificial neural networks. http://neuron.csie.ntust.edu.tw/homework/98/NN/homework3/M9809103,M9809111,M9809113_3/Methodology.html

  24. Robert Gordon University. Aritificial neural networks. http://www4.rgu.ac.uk/files/chapter2%20-%20intro%20to%20ANNs.pdf

  25. Feng, M., Kammeyer, K.-D.: Suppression of gaussian noise using cumulants: a quantitative analysis. In: 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 1997, vol. 5, pp. 3813–3816, April 1997

    Google Scholar 

  26. Quiroga, R.Q., Nadasdy, Z., Ben-Shaul, Y.: Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 16(8), 1661–1687 (2004)

    Article  MATH  Google Scholar 

  27. Ma, Y., Li, J.: A novel method based on adaptive median filtering and wavelet transform in noise images. In: 2011 IEEE 3rd International Conference on Communication Software and Networks (ICCSN), pp. 626–629, May 2011

    Google Scholar 

  28. Yagle, A.E.: A fast algorithm for toeplitz-block-toeplitz linear systems. In: Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2001, vol. 3, pp. 1929–1932 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim Bhatti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Veerabhadrappa, R. et al. (2015). Statistical Modelling of Artificial Neural Network for Sorting Temporally Synchronous Spikes. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9491. Springer, Cham. https://doi.org/10.1007/978-3-319-26555-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26555-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26554-4

  • Online ISBN: 978-3-319-26555-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics