Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 513 Accesses

Abstract

The interaction of single atoms with single photons has been at the heart of quantum physics since Max Planck’s idea of a quantized energy exchange between light and matter and Albert Einstein’s conclusion that a light beam consists of a stream of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Schrödinger, Are there quantum jumps? Part II. Br. J. Philos. Sci. 3(11), 233–242 (1952). ISSN: 0007-0882. http://www.jstor.org/stable/685266

  2. J.P. Dowling, G.J. Milburn Quantum technology: the second quantum revolution. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 361(1809), 1655–1674 (2003) ISSN: 1364-503X, 1471-2962. doi:10.1098/rsta.2003.1227. http://rsta.royalsocietypublishing.org/content/361/1809/1655

    Google Scholar 

  3. V. Giovannetti, S. Lloyd, L. Maccone, Quantum-enhanced measurements: beating the standard quantum limit. Science 306(5700), 1330–1336 (2004). ISSN: 0036-8075, 1095-9203. doi:10.1126/science.1104149. http://www.sciencemag.org/content/306/5700/1330

    Google Scholar 

  4. N. Gisin, R. Thew, Quantum communication. Nat. Photonics 1(3), 165–171 (2007). 00356, ISSN: 1749-4885. doi:10.1038/nphoton.2007.22. http://www.nature.com/nphoton/journal/v1/n3/abs/nphoton.2007.22.html

    Google Scholar 

  5. I. Buluta, F. Nori, Quantum simulators. Science 326(5949), 108–111 (2009). ISSN: 0036-8075, 1095-9203. doi:10.1126/science.1177838. http://www.sciencemag.org/content/326/5949/108

    Google Scholar 

  6. T.D. Ladd et al., Quantum computers. Nature 464(7285), 45–53 (2010). 00859, ISSN: 0028-0836. doi:10.1038/nature08812. http://dx.doi.org/10.1038/nature08812

    Google Scholar 

  7. D. Leibfried et al., Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75(1), 281 (2003). doi:10.1103/RevModPhys.75.281. http://link.aps.org/doi/10.1103/RevModPhys.75.281

    Google Scholar 

  8. D.J. Wineland, Nobel lecture: superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys. 85(3), 1103–1114 (2013). doi:10.1103/RevModPhys.85.1103. http://link.aps.org/doi/10.1103/RevModPhys.85.1103

    Google Scholar 

  9. J.M. Raimond, M. Brune, S. Haroche, Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73(3), 565–582 (2001). doi:10.1103/RevModPhys.73.565. http://link.aps.org/doi/10.1103/RevModPhys.73.565

    Google Scholar 

  10. S. Haroche, Nobel lecture: controlling photons in a box and exploring the quantum to classical boundary. Rev. Mod. Phys. 85(3), 1083–1102 (2013). doi:10.1103/RevModPhys.85.1083. http://link.aps.org/doi/10.1103/RevModPhys.85.1083

    Google Scholar 

  11. R. Grimm, M. Weidemüller, Y.B. Ovchinnikov, Optical Dipole Traps for Neutral Atoms, in Advances In Atomic, Molecular, and Optical Physics, vol 42 (Academic Press, 2000), pp. 95–170. ISBN: 978-0-12-003842-8. http://www.sciencedirect.com/science/article/pii/S1049250X0860186X

    Google Scholar 

  12. I. Bloch, Quantum coherence and entanglement with ultracold atoms in optical lattices. Nature 453(7198), 1016–1022 (2008). 00194. ISSN: 0028-0836. doi:10.1038/nature07126. http://www.nature.com/nature/journal/v453/n7198/full/nature07126.html

    Google Scholar 

  13. J.L. O’Brien, A. Furusawa, J. Vuckovic, Photonic quantum technologies. Nat. Photonics 3(12), 687–695 (2009). ISSN: 1749-4885. doi:10.1038/nphoton.2009.229. http://dx.doi.org/10.1038/nphoton.2009.229

    Google Scholar 

  14. R. Hanson et al., Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320(5874), 352–355 (2008). 00233 PMID: 18339902. ISSN: 0036-8075, 1095-9203. doi:10.1126/science.1155400. http://www.sciencemag.org/content/320/5874/352

    Google Scholar 

  15. F.A. Zwanenburg et al., Silicon quantum electronics. Rev. Mod. Phys. 85(3), 961–1019 (2013). 00049. doi:10.1103/RevModPhys.85.961. http://link.aps.org/doi/10.1103/RevModPhys.85.961

    Google Scholar 

  16. D.D. Awschalom et al., Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science 339(6124) 1174–1179 (2013). 00072, ISSN: 0036-8075, 1095-9203. doi:10.1126/science.1231364. http://www.sciencemag.org/content/339/6124/1174

    Google Scholar 

  17. J.Q. You, F. Nori, Atomic physics and quantum optics using superconducting circuits. Nature 474(7353), 589–597 (2011). ISSN: 0028-0836. doi:10.1038/nature10122. http://www.nature.com/nature/journal/v474/n7353/full/nature10122.html

    Google Scholar 

  18. M.H. Devoret, R.J. Schoelkopf, Superconducting circuits for quantum information: an outlook. Science 339(6124), 1169–1174 (2013). ISSN: 0036-8075, 1095-9203. doi:10.1126/science.1231930. http://www.sciencemag.org/content/339/6124/1169

    Google Scholar 

  19. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Cavity optomechanics. Rev. Mod. Phys. 86(4), 1391–1452 (2014). 00002, doi:10.1103/RevModPhys.86.1391. http://link.aps.org/doi/10.1103/RevModPhys.86.1391

    Google Scholar 

  20. C. Monroe, Quantum information processing with atoms and photons. Nature 416(6877), 238–246 (2002). ISSN: 0028-0836. doi:10.1038/416238a. http://www.nature.com/nature/journal/v416/n6877/abs/416238a.html

    Google Scholar 

  21. H.-J. Briegel et al., Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81(26), 5932–5935 (1998). 01541, doi:10.1103/PhysRevLett.81.5932. http://link.aps.org/doi/10.1103/PhysRevLett.81.5932

    Google Scholar 

  22. S.J. van Enk, J.I. Cirac, P. Zoller, Photonic channels for quantum communication. Science 279(5348), 205–208 (1998). ISSN: 0036-8075, 1095-9203. doi:10.1126/science.279.5348.205. http://www.sciencemag.org/content/279/5348/205

    Google Scholar 

  23. C. Monroe, J. Kim, Scaling the ion trap quantum processor. Science 339(6124), 1164–1169 (2013). ISSN: 0036-8075, 1095-9203. doi:10.1126/science.1231298. http://www.sciencemag.org/content/339/6124/1164

    Google Scholar 

  24. L.-M. Duan et al., Long-distance quantum communication with atomic ensembles and linear optics. Nature 414(6862), 413–418 (2001). ISSN: 0028-0836. doi:10.1038/35106500. http://www.nature.com/nature/journal/v414/n6862/abs/414413a0.html

    Google Scholar 

  25. M.D. Lukin et al., Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87(3), 037901 (2001). doi:10.1103/PhysRevLett.87.037901. http://link.aps.org/doi/10.1103/PhysRevLett.87.037901

  26. K. Hammerer, A.S. Sørensen, E.S. Polzik, Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82(2), 1041–1093 (2010). doi:10.1103/RevModPhys.82.1041. http://link.aps.org/doi/10.1103/RevModPhys.82.1041

    Google Scholar 

  27. D. Meschede, H. Walther, G. Müller, One-atom maser. Phys. Rev. Lett. 54(6), 551–554 (1985). 01169, doi:10.1103/PhysRevLett.54.551. http://link.aps.org/doi/10.1103/PhysRevLett.54.551

    Google Scholar 

  28. G. Nogues et al., Seeing a single photon without destroying it. Nature 400(6741), 239–242 (1999). ISSN: 0028-0836. doi:10.1038/22275. http://www.nature.com/nature/journal/v400/n6741/abs/400239a0.html

    Google Scholar 

  29. C. Guerlin et al., Progressive field-state collapse and quantum non-demolition photon counting. Nature 448(7156), 889–893 (2007). 00280, ISSN: 0028-0836. doi:10.1038/nature06057. http://dx.doi.org/10.1038/nature06057

    Google Scholar 

  30. S. Gleyzes et al., Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446(7133), 297–300 (2007). 00337, ISSN: 0028-0836. doi:10.1038/nature05589. http://www.nature.com/nature/journal/v446/n7133/abs/nature05589.html

    Google Scholar 

  31. A. Rauschenbeutel et al., Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83(24), 5166–5169 (1999). 00547, doi:10.1103/PhysRevLett.83.5166. http://link.aps.org/doi/10.1103/PhysRevLett.83.5166

    Google Scholar 

  32. A. Wallraff et al., Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431(7005), 162–167 (2004). ISSN: 0028-0836. doi:10.1038/nature02851. http://www.nature.com/nature/journal/v431/n7005/abs/nature02851.html

    Google Scholar 

  33. C. Deutsch et al., Spin self-rephasing and very long coherence times in a trapped atomic ensemble. Phys. Rev. Lett. 105(2), 020401 (2010). doi:10.1103/PhysRevLett.105.020401. http://link.aps.org/doi/10.1103/PhysRevLett.105.020401

  34. Q.A. Turchette et al., Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75(25), 4710–4713 (1995). doi:10.1103/PhysRevLett.75.4710. http://link.aps.org/doi/10.1103/PhysRevLett.75.4710

    Google Scholar 

  35. M. Hennrich et al., Vacuum-stimulated raman scattering based on adiabatic passage in a high-finesse optical cavity. Phys. Rev. Lett. 85(23), 4872–4875 (2000). doi:10.1103/PhysRevLett.85.4872. http://link.aps.org/doi/10.1103/PhysRevLett.85.4872

    Google Scholar 

  36. C.K. Law, J.H. Eberly, Arbitrary control of a quantum electromagnetic field. Phys. Rev. Lett. 76)(7), 1055–1058 (1996). 00389, doi:10.1103/PhysRevLett.76.1055. http://link.aps.org/doi/10.1103/PhysRevLett.76.1055

    Google Scholar 

  37. C.K. Law, H.J. Kimble, Deterministic generation of a bit-stream of single-photon pulses. J. Mod. Opt. 44(11-12), 2067–2074 (1997). ISSN: 0950-0340. doi:10.1080/09500349708231869. http://www.tandfonline.com/doi/abs/10.1080/09500349708231869

    Google Scholar 

  38. A. Kuhn et al., Controlled generation of single photons from a strongly coupled atom-cavity system. Appl. Phys. B 69(5-6), 373–377 (1999). ISSN: 0946-2171, 1432-0649. doi:10.1007/s003400050822. http://link.springer.com/article/10.1007/s003400050822

    Google Scholar 

  39. A. Kuhn, M. Hennrich, G. Rempe, Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89(6), 067901 (2002). doi:10.1103/PhysRevLett.89.067901. http://link.aps.org/doi/10.1103/PhysRevLett.89.067901

  40. T. Legero et al., Quantum beat of two single photons. Phys. Rev. Lett. 93(7), 070503 (2004). doi:10.1103/PhysRevLett.93.070503. http://link.aps.org/doi/10.1103/PhysRevLett.93.070503

  41. J. McKeever et al., Deterministic generation of single photons from one atom trapped in a cavity. Science 303(5666), 1992–1994 (2004). ISSN: 0036-8075, 1095-9203. doi:10.1126/science.1095232. http://www.sciencemag.org/content/303/5666/1992

    Google Scholar 

  42. M. Keller et al., Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431(7012), 1075–1078 (2004). 00472, ISSN: 0028-0836. doi:10.1038/nature02961. http://www.nature.com/nature/journal/v431/n7012/abs/nature02961.html

    Google Scholar 

  43. M. Hijlkema et al., A single-photon server with just one atom. Nat. Phys. 3(4), 253–255 (2007). 00227, ISSN: 1745-2473. doi:10.1038/nphys569. http://dx.doi.org/10.1038/nphys569

    Google Scholar 

  44. T. Wilk et al., Polarization-controlled single photons. Phys. Rev. Lett. 98(6), 063601 (2007). 00112, doi:10.1103/PhysRevLett.98.063601. http://link.aps.org/doi/10.1103/PhysRevLett.98.063601

  45. G.S Vasilev, D. Ljunggren, A. Kuhn, Single photons made-to-measure. New J. Phys. 12(6), 063024 (2010). 00027, ISSN: 1367-2630. doi:10.1088/1367-2630/12/6/063024. http://iopscience.iop.org/1367-2630/12/6/063024

    Google Scholar 

  46. M. Mücke et al., Generation of single photons from an atom-cavity system. Phys. Rev. A 87(6), 063805 (2013). 00002, doi:10.1103/PhysRevA.87.063805. http://link.aps.org/doi/10.1103/PhysRevA.87.063805

  47. T. Wilk et al., Single-atom single-photon quantum interface. Science 317(5837), 488–490 (2007). doi:10.1126/science.1143835. http://www.sciencemag.org/cgi/content/abstract/317/5837/488

    Google Scholar 

  48. B. Weber et al., Photon-photon entanglement with a single trapped atom. Phys. Rev. Lett. 102(3), 030501 (2009). 00082, doi:10.1103/PhysRevLett.102030501. http://link.aps.org/doi/10.1103/PhysRevLett.102.030501

  49. A.D. Boozer et al., Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98(19), 193601 (2007). doi:10.1103/PhysRevLett.98.193601. http://link.aps.org/doi/10.1103/PhysRevLett.98.193601

  50. H.P. Specht et al., A single-atom quantum memory. Nature 473(7346), 190–193 (2011). 00128, ISSN: 0028-0836. doi:10.1038/nature09997. http://dx.doi.org/10.1038/nature09997

    Google Scholar 

  51. S. Ritter et al., An elementary quantum network of single atoms in optical cavities. Nature 484(7393), 195–200 (2012). ISSN: 0028-0836. doi:10.1038/nature11023. http://www.nature.com/nature/journal/v484/n7393/abs/nature11023.html

    Google Scholar 

  52. J.I. Cirac et al., Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78(16), 3221–3224 (1997). doi:10.1103/PhysRevLett.78.3221. http://link.aps.org/doi/10.1103/PhysRevLett.78.3221

    Google Scholar 

  53. C. Nölleke et al., Efficient teleportation between remote single-atom quantum memories. Phys. Rev. Lett. 110(14), 140403 (2013). 00034, doi:10.1103/PhysRevLett.110.140403. http://link.aps.org/doi/10.1103/PhysRevLett.110.140403

  54. H. Specht, Einzelatom-Quantenspeicher für Polarisations-Qubits. Ph.D. Thesis. Technische Universität München (2010). http://mediatum.ub.tum.de/node?id=1002627

  55. C. Nölleke, Quantum state transfer between remote single atoms. 00000. Ph.D. Thesis. Technische Universität München, (2013). http://mediatum.ub.tum.de/node?id=1145613

  56. A. Reiserer et al., Ground-state cooling of a single atom at the center of an optical cavity. Phys. Rev. Lett. 110(22), 223003 (2013). doi:10.1103/PhysRevLett.110.223003. http://link.aps.org/doi/10.1103/PhysRevLett.110.223003

  57. L.-M. Duan, H.J. Kimble, Scalable photonic quantum computation through cavity- assisted interactions. Phys. Rev. Lett. 92(12), 127902 (2004). 00427, doi:10.1103/PhysRevLett.92.127902. http://link.aps.org/doi/10.1103/PhysRevLett.92.127902

  58. M. Fox, Quantum Optics: An Introduction. (Oxford University Press, Apr. 2006), 00288. ISBN: 978-0-19-152425-7

    Google Scholar 

  59. D.F. Walls, G. Gerard, J. Milburn, Quantum Optics. (Springer, 2008). ISBN: 3-540-28574-1

    Google Scholar 

  60. G.S Agarwal, Quantum Optics. (Cambridge University Press, 2013). ISBN: 978-1-107-00640-9

    Google Scholar 

  61. S. Haroche, J.-M Raimond, Exploring the Quantum: Atoms, Cavities, and Photons. (OUP Oxford, Apr. 2013). ISBN: 978-0-19-968031-3

    Google Scholar 

  62. E.T. Jaynes, F.W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51(1), 89–109 (1963). ISSN: 0018-9219. doi:10.1109/PROC.1963.1664

    Google Scholar 

  63. A. Reiserer, S. Ritter, G. Rempe, Nondestructive detection of an optical photon. Science 342(6164), 1349–1351 (2013). doi:10.1126/science.1246164. http://www.sciencemag.org/content/342/6164/1349

    Google Scholar 

  64. S. Nußmann, Kühlen und Positionieren eines Atoms in einem optischen Resonator. 00000. Ph.D. Thesis. Technische Universität München (2006). http://mediatum.ub.tum.de/node?id=603119

  65. A. Reiserer et al., A quantum gate between a flying optical photon and a single trapped atom. Nature 508(7495), 237–240 (2014). 00010, ISSN: 0028-0836. doi:10.1038/nature13177. http://www.nature.com/nature/journal/v508/n7495/full/nature13177.html

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Reiserer .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reiserer, A. (2016). Introduction. In: A Controlled Phase Gate Between a Single Atom and an Optical Photon. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-26548-3_1

Download citation

Publish with us

Policies and ethics