XaIBO: An Extension of aIB for Trajectory Clustering with Outlier

  • Yuejun Guo
  • Qing XuEmail author
  • Sheng Liang
  • Yang Fan
  • Mateu Sbert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9490)


Clustering plays an important role for trajectory analysis. The agglomerative Information Bottleneck (aIB) approach is effective for successfully managing an optimum number of clusters without the need of an explicit measure of trajectory distance, which is usually very difficult to be defined. In this paper, we propose to utilize a statistically representation of the trajectory shape to perform the aIB based trajectory clustering. In addition, an extension of aIB is proposed to cope with the clustering on trajectories with outliers (for brevity, we call this extended version of aIB as XaIBO) and in this case, XaIBO can be widely used in practice for dealing with complex trajectory data. Extensive experiments on synthetic, simulated and real trajectory data have shown that XaIBO achieves the trajectory clustering very well.


XaIBO aIB Trajectory clustering Outlier 


  1. 1.
    Dang, X.H., Bailey, J.: Generation of alternative clusterings using the cami approach. In: SDM, vol. 10, pp. 118–129. SIAM (2010)Google Scholar
  2. 2.
    Goldberger, J., Gordon, S., Greenspan, H.: Unsupervised image-set clustering using an information theoretic framework. IEEE Trans. Image Process. 15(2), 449–458 (2006)CrossRefGoogle Scholar
  3. 3.
    Guo, Y., Xu, Q., Yang, Y., Liang, S., Liu, Y., Sbert, M.: Anomaly detection based on trajectory analysis using kernel density estimation and information bottleneck techniques. Technical report 108, University of Girona (2014)Google Scholar
  4. 4.
    Hromic, H., Prangnawarat, N., Hulpuş, I., Karnstedt, M., Hayes, C.: Graph-based methods for clustering topics of interest in twitter. In: Cimiano, P., Frasincar, F., Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS, vol. 9114, pp. 701–704. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  5. 5.
    Annoni Jr., R., Forster, C.H.Q.: Analysis of aircraft trajectories using fourier descriptors and kernel density estimation. In: Proceedings of the 15th International IEEE Conference on Intelligent Transportation Systems, pp. 1441–1446 (2012)Google Scholar
  6. 6.
    Laxhammar, R., Falkman, G.: Online learning and sequential anomaly detection in trajectories. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1158–1173 (2014)CrossRefzbMATHGoogle Scholar
  7. 7.
    May, R., Hanrahan, P., Keim, D.A., Shneiderman, B., Card, S.: The state of visual analytics: views on what visual analytics is and where it is going. In: IEEE Symposium on Visual Analytics Science and Technology (VAST). pp. 257–259. IEEE, Salt Lake City, UT (2010)Google Scholar
  8. 8.
    Morris, B.T., Trivedi, M.M.: Trajectory learning for activity understanding: unsupervised, multilevel, and long-term adaptive approach. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2287–2301 (2011)CrossRefGoogle Scholar
  9. 9.
    Morris, B.T., Trivedi, M.M.: Understanding vehicular traffic behavior from video: a survey of unsupervised approaches. J. Electron. Imaging 22(4), 041113–041113 (2013)CrossRefGoogle Scholar
  10. 10.
    Piciarelli, C., Micheloni, C., Foresti, G.L.: Trajectory-based anomalous event detection. IEEE Trans. Circuits Syst. Video Technol. 18(11), 1544–1554 (2008)CrossRefGoogle Scholar
  11. 11.
    Schneidman, E., Slonim, N., Tishby, N., deRuyter van Steveninck, R., Bialek, W.: Analyzing neural codes using the information bottleneck method. In: Advances in Neural Information Processing Systems 15 (2002)Google Scholar
  12. 12.
    Slonim, N.: The information bottleneck: Theory and applications. Ph.D. thesis, Hebrew University of Jerusalem (2002)Google Scholar
  13. 13.
    Slonim, N., Somerville, R., Tishby, N., Lahav, O.: Objective classification of galaxy spectra using the information bottleneck method. Mon. Not. R. Astron. Soc. 323(2), 270–284 (2001)CrossRefGoogle Scholar
  14. 14.
    Slonim, N., Tishby, N.: Agglomerative information bottleneck. In: Advances in Neural Information Processing Systems, vol. 12, pp. 617–623. Citeseer (1999)Google Scholar
  15. 15.
    Slonim, N., Tishby, N.: Document clustering using word clusters via the information bottleneck method. In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 208–215. ACM (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yuejun Guo
    • 1
  • Qing Xu
    • 1
    Email author
  • Sheng Liang
    • 1
  • Yang Fan
    • 1
  • Mateu Sbert
    • 2
  1. 1.School of Computer Science and TechnologyTianjin UniversityTianjinChina
  2. 2.Graphics and Imaging LaboratoryUniversitat de GironaGironaSpain

Personalised recommendations