Skip to main content

Discriminative Dictionary Learning for Skeletal Action Recognition

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9489))

Included in the following conference series:

Abstract

Human action recognition is an important yet challenging task. With the introduction of RGB-D sensors, human body joints can be extracted with high accuracy, and skeleton-based action recognition has been investigated and gained some success. In this paper, we split an entire action trajectory into several segments and represent each segment using covariance descriptor of joints’ coordinates. We further employ the projective dictionary pair learning (PDPL) and majority-voting for multi-class action classification. Experimental results on two benchmark datasets demonstrate the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, J.K., Ryoo, M.S.: Human activity analysis: a review. ACM Comput. Surv. 43(3), 16 (2011)

    Article  Google Scholar 

  2. Bashir, F., Khokhar, A., Schonfeld, D.: Automatic object trajectory-based motion recognition using gaussian mixture models. In: 2012 IEEE International Conference on Multimedia and Expo, pp. 1532–1535 (2005)

    Google Scholar 

  3. Chen, L., Wei, H., Ferryman, J.M.: A survey of human motion analysis using depth imagery. Pattern Recogn. Lett. 34, 1995–2006 (2013)

    Article  Google Scholar 

  4. Faria, D.R., Premebida, C., Nunes, U.: A probabilistic approach for human everyday activities recognition using body motion from RGB-D images. In: IEEE International Symposium on Robot and Human Interactive Communication, pp. 732–737. IEEE (2014)

    Google Scholar 

  5. Gaglio, S., Re, G.L., Morana, M.: Human activity recognition process using 3-D posture data. IEEE Trans. Hum.-Mach. Syst. 45(5), 586–597 (2014)

    Article  Google Scholar 

  6. Gu, S., Zhang, L., Zuo, W., Feng, X.: Projective dictionary pair learning for pattern classification. In: Advances in Neural Information Processing Systems, pp. 793–801 (2014)

    Google Scholar 

  7. Han, J.: Enhanced computer vision with microsoft kinect sensor: a review. IEEE Trans. Cybern. 43(5), 1318–1334 (2013)

    Article  Google Scholar 

  8. Hussein, M.E., Torki, M., Gowayyed, M.A., El-Saban, M.: Human action recognition using a temporal hierarchy of covariance descriptors on 3D joint locations. In: The 23rd International Joint Conference on Artificial Intelligence (2013)

    Google Scholar 

  9. Johansson, G.: Visual motion perception. Sci. Am. 232(6), 76–88 (1975)

    Article  Google Scholar 

  10. Koppula, H.S., Gupta, R., Saxena, A.: Learning human activities and object affordances from RGB-D videos. Int. J. Robot. Res. 32(8), 951–970 (2013)

    Article  Google Scholar 

  11. Li, W., Zhang, Z., Liu, Z.: Action recognition based on a bag of 3D points. Workshop on Human Activity Understanding from 3D Data, pp. 9–14 (2010)

    Google Scholar 

  12. Lv, F., Nevatia, R.: Recognition and segmentation of 3-D human action using HMM and multi-class AdaBoost. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 359–372. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Supervised dictionary learning. In: arXiv preprint arXiv:0809.3083 (2008)

  14. Muller, M., Roder, T.: Motion templates for automatic classification and retrieval of motion capture data. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 137–146. Eurographics Association Aire-la-Ville, Switzerland (2006)

    Google Scholar 

  15. Ni, B., Pei, Y., Moulin, P., Yan, S.: Multilevel depth and image fusion for human activity detection. IEEE Trans. Cybern. 43(5), 1383–1394 (2013)

    Article  Google Scholar 

  16. Shan, J., Akella, S.: 3D human action segmentation and recognition using pose kinetic energy. In: IEEE Workshop on Advanced Robotics and Its Social Impacts, pp. 69–75 (2014)

    Google Scholar 

  17. Sivalingam, R., Somasundaram, G., Bhatawadekar, V., Morellas, V., Papanikolopoulos, N.: Sparse representation of point trajectories for action classification. In: IEEE International Conference on Robotics and Automation, pp. 3601–3606 (2012)

    Google Scholar 

  18. Sung, J., Ponce, C., Selman, B., Saxena, A.: Unstructured human activity detection from RGBD images. In: IEEE International Conference on Robotics and Automation, pp. 842–849 (2012)

    Google Scholar 

  19. Vieira, A.W., Nascimento, E.R., Oliveira, G.L., Liu, Z., Campos, M.F.M.: STOP: space-time occupancy patterns for 3D action recognition from depth map sequences. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 252–259. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Wang, J., Liu, Z., Wu, Y., Yuan, J.: Learning actionlet ensemble for 3D human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 36(5), 914–927 (2014)

    Article  Google Scholar 

  21. Wu, O., Li, Y.F., Zhang, J.: A hierarchical motion trajectory signature descriptor. In: IEEE International Conference on Robotics and Automation, pp. 3070–3075 (2008)

    Google Scholar 

  22. Xia, L., Chen, C.C., Aggarwal, J.K.: View invariant human action recognition using histograms of 3D joints. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 20–27 (2012)

    Google Scholar 

  23. Yang, X., Tian, Y.L.: Eigenjoints-based action recognition using Naive-Bayes-nearest-neighbor. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 14–19 (2012)

    Google Scholar 

  24. Yang, X., Tian, Y.L.: Effective 3D action recognition using eigenjoints. J. Visual Commun. Image Represent. 25(1), 2–11 (2014)

    Article  MathSciNet  Google Scholar 

  25. Ye, M., Zhang, Q., Wang, L., Zhu, J., Yang, R., Gall, J.: A survey on human motion analysis from depth data. In: Grzegorzek, M., Theobalt, C., Koch, R., Kolb, A. (eds.) Time-of-Flight and Depth Imaging. LNCS, vol. 8200, pp. 149–187. Springer, Heidelberg (2013)

    Google Scholar 

  26. Yuan, J., Wu, Y., Liu, Z., Wang, J.: Mining actionlet ensemble for action recognition with depth cameras. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1290–1297 (2012)

    Google Scholar 

  27. Zanfir, M., Leordeanu, M., Sminchisescu, C.: The moving pose: an efficient 3D kinematics descriptor for low-latency action recognition and detection. In: IEEE International Conference on Computer Vision, pp. 2752–2759 (2013)

    Google Scholar 

  28. Zhang, C., Tian, Y.: RGB-D camera-based daily living activity recognition. J. Comput. Vis. Image Process. 2(4), 12 (2012)

    Google Scholar 

  29. Zhu, Y., Chen, W., Guo, G.: Evaluating spatiotemporal interest point features for depth-based action recognition. Image Vis. Comput. 32(8), 453–464 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Project 61175116, and Shanghai Knowledge Service Platform for Trustworthy Internet of Things (No. ZF1213).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Xiang or Jinhua Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Xiang, Y., Xu, J. (2015). Discriminative Dictionary Learning for Skeletal Action Recognition. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9489. Springer, Cham. https://doi.org/10.1007/978-3-319-26532-2_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26532-2_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26531-5

  • Online ISBN: 978-3-319-26532-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics