Skip to main content

Fast Constrained Image Segmentation Using Optimal Spanning Trees

  • Conference paper
  • First Online:
Large-Scale Scientific Computing (LSSC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9374))

Included in the following conference series:

  • 695 Accesses

Abstract

We propose a graph theoretical algorithm for image segmentation which preserves both the volume and the connectivity of the solid (non-void) phase of the image. The approach uses three stages. Each step optimizes the approximation error between the image intensity vector and piece-wise constant (indicator) vector characterizing the segmentation of the underlying image. The different norms in which this approximation can be measured give rise to different methods. The running time of our algorithm is \(\mathcal {O}(N\log N)\) for an image with N voxels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amghibech, S.: Eigenvalues of the discrete \(p\)-Laplacian for graphs. Ars Combinatoria 67, 283–302 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Beller, G., Burkhart, M., Felsenberg, D., Gowin, W., Hege, H.-C., Koller, B., Prohaska, S., Saparin, P., Thomsen, J.: Vertebral Body Data Set ESA29-99-L3. http://bone3d.zib.de/data/2005/ESA29-99-L3/

  3. Bezdek, J., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

  4. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28(2), 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  5. Bühler, T., Hein, M.: Spectral clustering based on the graph \(p\)-Laplacian. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 81–88 (2009)

    Google Scholar 

  6. Cai, X., Steidl, G.: Multiclass segmentation by iterated ROF thresholding. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.-C. (eds.) EMMCVPR 2013. LNCS, vol. 8081, pp. 237–250. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Chan, T., Esedolgu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  9. Dong, B., Chien, A., Shen, Z.: Frame based segmentation for medical images. Commun. Math. Sci. 32, 1724–1739 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004). http://dx.doi.org/10.1023/B:VISI.0000022288.19776.77

    Article  Google Scholar 

  11. Georgiev, I., Harizanov, S., Vutov, Y.: Supervised 2-phase segmentation of porous media with known porosity. In: 10th International Conference on Large-Scale Scientific Computations (2015, accepted)

    Google Scholar 

  12. He, Y., Shafei, B., Hussaini, M.Y., Ma, J., Steidl, G.: A new fuzzy c-means method with total variation regularization for segmentation of images with noisy and incomplete data. Pattern Recogn. 45, 3436–3471 (2012). http://dx.doi.org/10.1016/j.patcog.2012.03.009

    Google Scholar 

  13. Kang, S.H., Shafei, B., Steidl, G.: Supervised and transductive multi-class segmentation using \(p\)-Laplacians and RKHS methods. J. Vis. Commun. Image Represent. 25(5), 1136–1148 (2014)

    Article  Google Scholar 

  14. Kraus, J.K.: An algebraic preconditioning method for \(M\)-matrices: linear versus non-linear multilevel iteration. Numer. Linear Algebra Appl. 9(8), 599–618 (2002). http://dx.doi.org/10.1002/nla.281

    Article  MathSciNet  MATH  Google Scholar 

  15. Kruskal, J.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  16. Law, N.Y., Lee, H.K., Ng, M.K., Yip, A.M.: A semisupervised segmentation model for collections of images. IEEE Trans. Image Proc. 21(6), 2955–2968 (2012)

    Article  MathSciNet  Google Scholar 

  17. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  18. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the Mumford-Shah functional. In: Proceedings of IEEE 12th Conference Computer Vision, pp. 1133–1140 (2009)

    Google Scholar 

  20. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MATH  Google Scholar 

  22. Shi, J., Malik, J.: Normalized cuts and image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 731–737 (1997)

    Google Scholar 

  23. Shi, J., Szalam, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  24. Urquhart, R.: Graph theoretical clustering based on limited neighborhood sets. Pattern Recogn. 15(3), 173–187 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mamford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  26. Weiss, Y.: Segmentation using eigenvectors: a unifying view. Proc. Int. Conf. Comput. Vis. 2, 975–982 (1999)

    Google Scholar 

  27. Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 1101–1113 (1993)

    Article  Google Scholar 

  28. Zahn, C.T.: Graph-theoretic methods for detecting and describing gestalt clusters. IEEE Trans. Comput. 20, 68–86 (1971)

    Article  MATH  Google Scholar 

  29. Zhang, Y., Matuszewski, B., Shark, L., Moore, C.: Medical image segmentation using new hybrid level-set method. In: BioMedical Visualization, MEDIVIS 2008, pp. 71–76 (2008)

    Google Scholar 

Download references

Acknowledgments

The research is supported in part by the project AComIn “Advanced Computing for Innovation”, grant 316087, funded by the FP7 Capacity Program. The research of Ludmil Zikatanov is supported in part by NSF DMS-1217142 and NSF DMS-1418843.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Harizanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Harizanov, S., Margenov, S., Zikatanov, L. (2015). Fast Constrained Image Segmentation Using Optimal Spanning Trees. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2015. Lecture Notes in Computer Science(), vol 9374. Springer, Cham. https://doi.org/10.1007/978-3-319-26520-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26520-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26519-3

  • Online ISBN: 978-3-319-26520-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics