Real-Time Decision Support Using Data Mining to Predict Blood Pressure Critical Events in Intensive Medicine Patients

  • Filipe PortelaEmail author
  • Manuel Filipe Santos
  • José Machado
  • António Abelha
  • Fernando Rua
  • Álvaro Silva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9456)


Patient blood pressure is an important vital signal to the physicians take a decision and to better understand the patient condition. In Intensive Care Units is possible monitoring the blood pressure due the fact of the patient being in continuous monitoring through bedside monitors and the use of sensors. The intensivist only have access to vital signs values when they look to the monitor or consult the values hourly collected. Most important is the sequence of the values collected, i.e., a set of highest or lowest values can signify a critical event and bring future complications to a patient as is Hypotension or Hypertension. This complications can leverage a set of dangerous diseases and side-effects. The main goal of this work is to predict the probability of a patient has a blood pressure critical event in the next hours by combining a set of patient data collected in real-time and using Data Mining classification techniques. As output the models indicate the probability (%) of a patient has a Blood Pressure Critical Event in the next hour. The achieved results showed to be very promising, presenting sensitivity around of 95 %.


Data mining Intcare Intensive medicine Blood pressure Critical events Decision support Real-Time 



This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the Project Scope UID/CEC/00319/2013 and the contract PTDC/EEI-SII/1302/2012 (INTCare II).


  1. 1.
    Kannel, W.B.: Risk stratification in hypertension: new insights from the Framingham Study. Am. J. Hypertens. 13, 3S–10S (2000)CrossRefGoogle Scholar
  2. 2.
    Portela, F., Santos, M.F., Machado, J., Abelha, A., Silva, Á., Rua, F.: Pervasive and intelligent decision support in intensive medicine – the complete picture. In: Bursa, M., Khuri, S., Renda, M.E. (eds.) ITBAM 2014. LNCS, vol. 8649, pp. 87–102. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Oliveira, S., Portela, F., Santos, M.F., Machado, J., Abelha, A., Silva, Á., Rua, F.: Predicting plateau pressure in intensive medicine for ventilated patients. In: Rocha, A., Correia, A.M., Costanzo, S., Reis, L.P. (eds.) New Contributions in Information Systems and Technologies, Advances in Intelligent Systems and Computing 354. AISC, vol. 354, pp. 179–188. Springer, Heidelberg (2015)Google Scholar
  4. 4.
    Portela, F., Santos, M.F., Machado, J., Abelha, A., Silva, Á., Rua, F.: Preventing patient cardiac arrhythmias by using data mining techniques. In: 2014 IEEE Conference on Biomedical Engineering and Sciences (2014)Google Scholar
  5. 5.
    Braga, P., Portela, F., Santos, M.F.: Data mining models to predict patient’s readmission in intensive care units. In: ICAART - International Conference on Agents and Artificial Intelligence (2015)Google Scholar
  6. 6.
    Veloso, R., Portela, F., Santos, M., Machado, J.M.F., Abelha, A., Silva, Á., Rua, F.: Real-time data mining models for predicting length of stay in intensive care units. In: KMIS 2014-International Conference on Knowledge Management and Information Sharing (2014)Google Scholar
  7. 7.
    Portela, F., Santos, M.F., Machado, J., Abelha, A., Silva, Á.: Pervasive and intelligent decision support in critical health care using ensembles. In: Bursa, M., Khuri, S., Renda, M.E. (eds.) ITBAM 2013. LNCS, vol. 8060, pp. 1–16. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Wolf-Maier, K., Cooper, R.S., Banegas, J.R., Giampaoli, S., Hense, H.-W., Joffres, M., Kastarinen, M., Poulter, N., Primatesta, P., Rodríguez-Artalejo, F.: Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. JAMA 289, 2363–2369 (2003)CrossRefGoogle Scholar
  10. 10.
    Mancia, G., Fagard, R., Narkiewicz, K., Redon, J., Zanchetti, A., Böhm, M., Christiaens, T., Cifkova, R., De Backer, G., Dominiczak, A., Zannad, F.: 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European society of hypertension (ESH) and of the European Society of Cardiology (ESC). Blood Press. 22(4), 193–278 (2013)CrossRefGoogle Scholar
  11. 11.
    Mahfoud, F., Ukena, C., Kandolf, R., Kindermann, M., Böhm, M., Kindermann, I.: Blood pressure and heart rate predict outcome in patients acutely admitted with suspected myocarditis without previous heart failure. J. Hypertens. 30, 1217–1224 (2012)CrossRefGoogle Scholar
  12. 12.
    Mitsa, T.: Temporal Data Mining. CRC Press, Boca Raton (2010)CrossRefzbMATHGoogle Scholar
  13. 13.
    Bucknall, T.K.: Medical error and decision making: learning from the past and present in intensive care. Aust. Crit. Care 23, 150–156 (2010)CrossRefGoogle Scholar
  14. 14.
    Portela, F., Santos, M.F., Silva, Á., Machado, J., Abelha, A.: Enabling a pervasive approach for intelligent decision support in critical health care. Presented at HCist 2011 – International Workshop on Health and Social Care Information Systems and Technologies, Algarve, Portugal, p. 10 (2011)Google Scholar
  15. 15.
    Gonçalves, J.M.C., Portela, F., Santos, M.F., Silva, Á., Machado, J., Abelha, A.: Predict sepsis level in intensive medicine – data mining approach. In: Rocha, Á., Correia, A.M., Wilson, T., Stroetmann, K.A. (eds.) Advances in Information Systems and Technologies. AISC, vol. 206, pp. 201–211. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Oliveira, S., Portela, F., Santos, M.F., Machado, J., Abelha, A., Silva, Á., Rua, F.: Intelligent decision support to predict patient barotrauma risk in intensive care units. In: Procedia Computer Science - HCIST 2015 - Healthy and Secure People. Elsevier (2015)Google Scholar
  17. 17.
    Veloso, R., Portela, F., Santos, M.F., Silva, Á., Rua, F., Abelha, A., Machado, J.: A clustering approach for predicting readmissions in intensive medicine. Procedia Technol. 16, 1307–1316 (2014)CrossRefGoogle Scholar
  18. 18.
    Portela, F., Veloso, R., Oliveira, S., Santos, M.F., Abelha, A., Machado, J., Silva, Á, Rua, F.: Predict hourly patient discharge probability in intensive care units using data mining. In: International Conference on Computer Science and Computational Mathematics (ICCSCM 2014). Science Society, Langkawi, Malaysia (2014). ISSN: 1513-1874Google Scholar
  19. 19.
    Silva, A., Cortez, P., Santos, M.F., Gornesc, L., Neves, J.: Mortality assessment in intensive care units via adverse events using artificial neural networks. Artif. Intell. Med. 36, 223–234 (2006)CrossRefGoogle Scholar
  20. 20.
    Portela, F., Gago, P., Santos, M.F., Machado, J., Abelha, A., Silva, Á., Rua, F.: Implementing a pervasive real-time intelligent system for tracking critical events with intensive care patients. IJHISI – Int. J. Healthc. Inf. Syst. Inf. 8(4), 1–16. IGI Global (2013). ISSN: 1555-3396. Google Scholar
  21. 21.
    Silva, Á., Cortez, P., Santos, M.F., Gomes, L., Neves, J.: Rating organ failure via adverse events using data mining in the intensive care unit. Artif. Intell. Med. 43, 179–193 (2008)CrossRefGoogle Scholar
  22. 22.
    Lee, P.: Design research: what is it and why do it? In: The Reboot, vol. 2013. Reboot (2012).
  23. 23.
    Lunenfeld, P., Laurel, B.: Design Research: Methods and Perspectives. MIT Press, Cambridge (2003)Google Scholar
  24. 24.
    Vincent, J.L., Moreno, R., Takala, J., Willatts, S., De Mendonca, A., Bruining, H., Reinhart, C.K., Suter, P.M., Thijs, L.G.: The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. Intensive Care Med. 22, 707–710 (1996)CrossRefGoogle Scholar
  25. 25.
    Guy, W.: ECDEU Assessment Manual for Psychopharmacology. US Department of Health, Education, and Welfare, Public Health Service, Alcohol, Drug Abuse, and Mental Health Administration, National Institute of Mental Health, Psychopharmacology Research Branch, Division of Extramural Research Program, Rockville (1976)Google Scholar
  26. 26.
    Guy, W.: Clinical global impressions (CGI) scale. In: Psychiatric Measures. APA, Washington, D.C. (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Filipe Portela
    • 1
    • 3
    Email author
  • Manuel Filipe Santos
    • 1
  • José Machado
    • 1
  • António Abelha
    • 1
  • Fernando Rua
    • 2
  • Álvaro Silva
    • 2
  1. 1.Algoritmi CentreUniversity of MinhoBragaPortugal
  2. 2.Serviço Cuidados IntensivosCentro Hospitalar do Porto, Hospital Santo AntónioPortoPortugal
  3. 3.ESEIGPorto PolytechnicPortoPortugal

Personalised recommendations