Skip to main content

Real-Time Recognition of Arm Motion Using Artificial Neural Network Multi-perceptron with Arduino One MicroController and EKG/EMG Shield Sensor

  • Conference paper
  • First Online:
Ambient Intelligence for Health (AmIHEALTH 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9456))

Included in the following conference series:

Abstract

Currently, human-computer interfaces have a number of useful applications for people.The use of electromyographic signals (EMG) has shown to be effective for human-computer interfaces. Theclassification of patterns based on EMG signals has been successfully applied in various tasks such asmotion detection to control of video games. An alternative to increasing access to these applicationsis the use of low-cost hardware to sample the EMG signals considering a real-time response. This paperpresents a methodology for recognizing patterns of EMG signals given by arm movements in real time. Ourproposal is based on an artificial Neural Network, Multilayer Perceptron, where the EMG signals are processedby a set of signal processing techniques. The hardware used for obtaining the signal is based on Ag/AgClconnected to the EKG/EMG-Shield plate mounted on a Arduino One R3 card which is used to control a videogame. The implemented application achieves an accuracy above 90 % using less than 0.2 s for recognitionof actions in time of testing. Our methodology is shown to predict different movements of the human armreliably, at a low cost and in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seungchan, L., Younghak, S., Soogil, W., Kiseon, K., Heung-No, L.: Review of wireless brain-computer interface systems. In: Intech, pp. 215–238 (2013)

    Google Scholar 

  2. Donofrio, P.: Abnormal Nerve Conduction Patterns. In: 3nd Biennial Contemporary Clinical neurophysiological Symposium. Vanderbilt University Medical Center (2013)

    Google Scholar 

  3. Mateo, A., Giuseppina, G., Michele, F.: Clasification of EMG signals throudg wavelet analysis and neural networks for controlling an active hand prothesis. Department of Electronics and Information, Politecnico di Milano, Italy (2007)

    Google Scholar 

  4. Lennart, E., Michael, K., Calvin, L., Regan, L.: Biofeedback game design: using direct and indirect physiological control to enhance game interaction. In: Vancouver, pp. 103–112 (2011)

    Google Scholar 

  5. Panagiotis, K., Kostas, J.: An EMG-based robot control scheme robust to time-varying EMG signal features. IEEE Trans. Inf. Technol. Biomed. 14(3), 581–688 (2010)

    Google Scholar 

  6. Chen, X., Zhang, D., Zhu, X.: Application of a self-enhancing classification method to electromyography pattern recognition for multifunctional prosthesis control. JNE 1–13 (2013)

    Google Scholar 

  7. Hornos, T.: Wireless ECG/EEG with the MSP430 Microcontroller. Department of Electronics and Electrical Engineering, University of Glasgow (2009)

    Google Scholar 

  8. Lessard, C.: Signal Processing of Random Physiological Signals (First). Morgan & Claypool (2006)

    Google Scholar 

  9. Reyes, Y.: Procesamiento Digital De Señales Mioeléctricas. Universidad De Las Américas, Puebla. Capítulo, vol. 3, pp. 42–57

    Google Scholar 

  10. Alva, C., Castillo, J., Gómez M., Samamé, A.: Procesamiento de Señales Mioeléctricas Aplicado a un Robot de Cinco Grados de Libertad. In: IEEE UNI, pp. 1–6 (2011)

    Google Scholar 

  11. Vijay, R.: EMG signal noise removal using neural networks, advances in applied electromyography. In: InTech, pp. 77–99 (2011)

    Google Scholar 

  12. López, M., Toranzos, V., Lombardero, O.: Sistema de adquisición y visualización de señales mioeléctricas (2011)

    Google Scholar 

  13. González, I., Cifuentes, A.: Diseño y Construcción de un Sistema para la Detección de Señales Electromiográficas. In: UADY (2010)

    Google Scholar 

  14. Hong-Bo, X., Tianruo, G., Siwei, B., Socrates, D.: Hybrid soft computing systems for electromyographic signals analysis: a review. In: Biomed Central, pp. 1–19 (2014)

    Google Scholar 

  15. Chowdury, R.H.: Surface electromyography signal processing and classification techniques. In: MDPI, pp. 12432–12466 (2013)

    Google Scholar 

  16. Palastanga, N., Field, D., Soames, R.: Anatomy and Human Movement: Structure and Function, pp. 91–94 (Paidotribo, Editorial). Butterworth-Heinemann, Oxford (2007)

    Google Scholar 

  17. Joseph, S.: Distal Radioulnar Joint Biomechanics and Forearm Muscle Activity. University of Kentucky Doctoral Dissetations. Paper 825 (2011)

    Google Scholar 

  18. Stegeman, D., Hermens, H.: Standards for surface electromyography: the European project Surface EMG for non-invasive assessment of muscles (SENIAM), Institute of Neurology, Department of Clinical Neurophysiology, University Medical Centre Nijmegen, Graduate Institute for Fundamental and Clinical Human Movement Sciences (2014)

    Google Scholar 

  19. Muhammad, Z.: Signal acquisition using surface EMG and circuit design considerations for robotic prosthesis. In: InTech, pp. 428–448 (2012)

    Google Scholar 

  20. Petter, K.: The ABC of EMG. Noraxon Inc., USA (2006)

    Google Scholar 

  21. Angkoon, P., Chusak, L., Pornchai, P.: A novel feature extraction for robust pattern recognition. J. Comput. 1, 71–80 (2009)

    Google Scholar 

  22. Guanglin, L.: Electromyography pattern-recognition-based control of powerd multifuctional upper-limb prostheses. In: InTech, pp. 100–116 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Caro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Caro, L.A., Silva, C., Peralta, B., Herrera, O.A., Barrientos, S. (2015). Real-Time Recognition of Arm Motion Using Artificial Neural Network Multi-perceptron with Arduino One MicroController and EKG/EMG Shield Sensor. In: Bravo, J., Hervás, R., Villarreal, V. (eds) Ambient Intelligence for Health. AmIHEALTH 2015. Lecture Notes in Computer Science(), vol 9456. Springer, Cham. https://doi.org/10.1007/978-3-319-26508-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26508-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26507-0

  • Online ISBN: 978-3-319-26508-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics