Dependent Types for Pragmatics

Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 38)


In this paper, we present an extension to Martin-Löf’s Intuitionistic Type Theory which gives natural solutions to problems in pragmatics, such as pronominal reference and presupposition. Our approach also gives a simple account of donkey anaphora without resorting to exotic scope extension of the sort used in Discourse Representation Theory and Dynamic Semantics, thanks to the proof-relevant nature of type theory.


Semantics Pragmatics Pronouns Presuppositions Type theory Dependent types Intuitionism 



The second author thanks Mark Bickford, Bob Harper and Bob Constable for illuminating discussions on choice sequences, Church’s Thesis, and computational open-endedness. We thank our reviewers for their constructive feedback and references to related work.


  1. Allen, S., Bickford, M., Constable, R., Eaton, R., Kreitz, C., Lorigo, L., Moran, E.: Innovations in computational type theory using Nuprl. J. Appl. Log. 4(4), 428–469 (2006). Towards Computer Aided MathematicsGoogle Scholar
  2. Bekki, D.: Representing anaphora with dependent types. In: Asher, N., Soloviev, S. (eds.) Logical Aspects of Computational Linguistics. Lecture Notes in Computer Science, vol. 8535, pp. 14–29. Springer, Berlin/Heidelberg (2014)Google Scholar
  3. Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F., Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki, J.T., Smith, S.F.: Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall, Upper Saddle River (1986)Google Scholar
  4. Coquand, T., Jaber, G.: A computational interpretation of forcing in type theory. In: Dybjer, P., Lindström, S., Palmgren, E., Sundholm, G. (eds.) Epistemology Versus Ontology, Logic, Epistemology, and the Unity of Science, vol. 27, pp. 203–213. Springer, Dordrecht (2012)CrossRefGoogle Scholar
  5. Devriese, D., Piessens, F.: On the bright side of type classes: instance arguments in Agda. In: Proceedings of the 16th ACM SIGPLAN International Conference on Functional Programming, ICFP’11, pp. 143–155. ACM, New York (2011)Google Scholar
  6. Harper, R., Licata, D.: Mechanizing metatheory in a logical framework. J. Funct. Program. 17(4–5), 613–673 (2007)CrossRefGoogle Scholar
  7. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. ACM 40(1), 143–184 (1993)CrossRefGoogle Scholar
  8. Howe, D.: On computational open-endedness in Martin-Löf’s type theory. In: Proceedings of Sixth Annual IEEE Symposium on Logic in Computer Science (LICS’91), Amsterdam, pp. 162–172 (1991)Google Scholar
  9. Marlow, S.: Haskell 2010 Language Report (2010). haskell2010.pdf
  10. Martin-Löf, P.: Constructive mathematics and computer programming. In: Cohen, L.J., Łoś, J., Pfeiffer, H., Podewski, K.P. (eds.) Logic, Methodology and Philosophy of Science VI. Proceedings of the Sixth International Congress of Logic, Methodology and Philosophy of Science, Hannover 1979. Studies in Logic and the Foundations of Mathematics, vol. 104, pp. 153–175. North-Holland (1982)Google Scholar
  11. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis, Napoli (1984)Google Scholar
  12. Martin-Löf, P.: Analytic and synthetic judgements in type theory. In: Parrini, P. (ed.) Kant and Contemporary Epistemology. The University of Western Ontario Series in Philosophy of Science, vol. 54, pp. 87–99. Springer, Dordrecht (1994)Google Scholar
  13. Martin-Löf, P.: On the meanings of the logical constants and the justifications of the logical laws. Nord. J. Philos. Log. 1(1), 11–60 (1996)Google Scholar
  14. Nanevski, A., Pfenning, F., Pientka, B.: Contextual modal type theory. ACM Trans. Comput. Log. 9(3), 23:1–23:49 (2008)Google Scholar
  15. Pfenning, F.: Logical frameworks—a brief introduction. In: Schwichtenberg, H., Steinbrüggen, R. (eds.) Proof and System-Reliability. NATO Science Series, vol. 62, pp. 137–166. Springer, Dordrecht (2002)CrossRefGoogle Scholar
  16. Rahli, V., Bickford, M.: A nominal exploration of intuitionism. In: Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs (2016)Google Scholar
  17. Ranta, A.: Type-Theoretical Grammar. Oxford University Press, Oxford (1994)Google Scholar
  18. Sundholm, G.: Proof theory and meaning. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic. Synthese Library, vol. 166, pp. 471–506. Springer, Dordrecht (1986)CrossRefGoogle Scholar
  19. Sundholm, G.: Constructive recursive functions, Church’s thesis, and Brouwer’s theory of the creating subject: afterthoughts on a parisian joint session. In: Dubucs, J., Bourdeau, M. (eds.) Constructivity and Computability in Historical and Philosophical Perspective, Logic, Epistemology, and the Unity of Science, vol. 34, pp. 1–35. Springer, Dordrecht (2014)Google Scholar
  20. van Atten, M.: Brouwer Meets Husserl: On the Phenomenology of Choice Sequences. Springer, Dordrecht (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Wilton ManorsUSA
  2. 2.SlamData, Inc.BoulderUSA

Personalised recommendations