Advertisement

Atomic Systems in Proof-Theoretic Semantics: Two Approaches

  • Thomas PiechaEmail author
  • Peter Schroeder-Heister
Chapter
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 38)

Abstract

Atomic systems are systems of rules containing only atomic formulas. In proof-theoretic semantics for minimal and intuitionistic logic they are used as the base case in an inductive definition of validity. We compare two different approaches to atomic systems. The first approach is compatible with an interpretation of atomic systems as representations of states of knowledge. The second takes atomic systems to be definitions of atomic formulas. The two views lead to different notions of derivability for atomic formulas, and consequently to different notions of proof-theoretic validity. In the first approach, validity is stable in the sense that for atomic formulas logical consequence and derivability coincide for any given atomic system. In the second approach this is not the case. This indicates that atomic systems as definitions, which determine the meaning of atomic sentences, might not be the proper basis for proof-theoretic validity, or conversely, that standard notions of proof-theoretic validity are not appropriate for definitional rule systems.

Keywords

Proof-theoretic semantics Atomic systems Higher-level rules Definitions Definitional reflection Minimal logic Intuitionistic logic 

Notes

Acknowledgements

This work was carried out within the French-German ANR-DFG project “Beyond Logic”, DFG grant Schr 275/17-1. We thank an anonymous reviewer for helpful comments and suggestions.

References

  1. Aczel, P.: An introduction to inductive definitions. In: Barwise, J. (ed.) Handbook of Mathematical Logic, pp. 739–782. North-Holland, Amsterdam (1977)CrossRefGoogle Scholar
  2. de Campos Sanz, W., Piecha, T.: Inversion by definitional reflection and the admissibility of logical rules. Rev. Symb. Log. 2(3), 550–569 (2009)CrossRefGoogle Scholar
  3. de Campos Sanz, W., Piecha, T., Schroeder-Heister, P.: Constructive semantics, admissibility of rules and the validity of Peirce’s law. Log. J. IGPL 22(2), 297–308 (2014). First published online 6 Aug 2013Google Scholar
  4. Dummett, M.: The Logical Basis of Metaphysics. Duckworth, London (1991)Google Scholar
  5. Hallnäs, L.: Partial inductive definitions. Theor. Comput. Sci. 87, 115–142 (1991)CrossRefGoogle Scholar
  6. Hallnäs, L.: On the proof-theoretic foundation of general definition theory. In: Kahle, R., Schroeder-Heister, P. (eds.) Proof-Theoretic Semantics. Synthese, vol. 148, pp. 589–602. Springer, Berlin (2006)Google Scholar
  7. Hallnäs, L., Schroeder-Heister, P.: A proof-theoretic approach to logic programming. I. Clauses as rules. J. Log. Comput. 1, 261–283 (1990)CrossRefGoogle Scholar
  8. Hallnäs, L., Schroeder-Heister, P.: A proof-theoretic approach to logic programming. II. Programs as definitions. J. Log. Comput. 1, 635–660 (1991)Google Scholar
  9. Moschovakis, J.: Intuitionistic logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2014). http://plato.stanford.edu/archives/fall2014/entries/logic-intuitionistic/
  10. Olkhovikov, G.K., Schroeder-Heister, P.: Proof-theoretic harmony and the levels of rules: generalised non-flattening results. In: Moriconi, E., Tesconi, L. (eds.) Second Pisa Colloquium in Logic, Language and Epistemology, pp. 245–287. ETS, Pisa (2014)Google Scholar
  11. Piecha, T.: Completeness in proof-theoretic semantics. In: Piecha, T., Schroeder-Heister, P. (eds.) Advances in Proof-Theoretic Semantics. Trends in Logic, vol. 43, pp. 231–251. Springer, Cham (2016)CrossRefGoogle Scholar
  12. Piecha, T., de Campos Sanz, W., Schroeder-Heister, P.: Failure of completeness in proof-theoretic semantics. J. Philos. Log. 44(3), 321–335 (2015). First published online 1 Aug 2014Google Scholar
  13. Prawitz, D.: Ideas and results in proof theory. In: Fenstad, J.E. (ed.) Proceedings of the Second Scandinavian Logic Symposium. Studies in Logic and the Foundations of Mathematics, vol. 63, pp. 235–307. North-Holland, Amsterdam (1971)CrossRefGoogle Scholar
  14. Prawitz, D.: Towards a foundation of a general proof theory. In: Suppes, P., et al. (eds.) Logic, Methodology and Philosophy of Science IV, pp. 225–250. North-Holland, Amsterdam (1973)Google Scholar
  15. Prawitz, D.: On the idea of a general proof theory. Synthese 27, 63–77 (1974)CrossRefGoogle Scholar
  16. Prawitz, D.: An approach to general proof theory and a conjecture of a kind of completeness of intuitionistic logic revisited. In: Pereira, L.C., Haeusler, E.H., de Paiva, V. (eds.) Advances in Natural Deduction. Trends in Logic, vol. 39, pp. 269–279. Springer, Berlin (2014)CrossRefGoogle Scholar
  17. Prawitz, D.: On the relation between Heyting’s and Gentzen’s approaches to meaning. In: Piecha, T., Schroeder-Heister, P. (eds.) Advances in Proof-Theoretic Semantics. Trends in Logic, vol. 43, pp. 5-25. Springer, Cham (2016)CrossRefGoogle Scholar
  18. Sandqvist, T.: Classical logic without bivalence. Analysis 69, 211–217 (2009)CrossRefGoogle Scholar
  19. Sandqvist, T.: Base-extension semantics for intuitionistic sentential logic. Log. J. IGPL 22(1), 147–154 (2015)Google Scholar
  20. Sandqvist, T.: Hypothesis-discharging rules in atomic bases. In: Wansing, H. (ed.) Dag Prawitz on Proofs and Meaning. Outstanding Contributions to Logic, vol. 7, pp. 313–328. Springer, Cham (2015)Google Scholar
  21. Schroeder-Heister, P.: A natural extension of natural deduction. J. Symb. Log. 49, 1284–1300 (1984)CrossRefGoogle Scholar
  22. Schroeder-Heister, P.: Rules of definitional reflection. In: Proceedings of the Eighth Annual IEEE Symposium on Logic in Computer Science, Montreal 1993, pp. 222–232. IEEE Computer Society, Los Alamitos (1993)Google Scholar
  23. Schroeder-Heister, P.: Validity concepts in proof-theoretic semantics. In: Kahle, R., Schroeder-Heister, P. (eds.) Proof-Theoretic Semantics. Synthese, vol. 148, pp. 525–571. Springer, Berlin (2006)Google Scholar
  24. Schroeder-Heister, P.: Proof-theoretic semantics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Winter 2012 Edition) (2012). http://plato.stanford.edu/archives/win2012/entries/proof-theoretic-semantics/
  25. Schroeder-Heister, P.: The calculus of higher-level rules, propositional quantifiers, and the foundational approach to proof-theoretic harmony. Stud. Log. 102, 1185–1216 (2014). Special issue, Gentzen’s and Jaśkowski’s Heritage: 80 Years of Natural Deduction and Sequent Calculi, edited by A. IndrzejczakGoogle Scholar
  26. Schroeder-Heister, P.: Open problems in proof-theoretic semantics. In: Piecha, T., Schroeder-Heister, P. (eds.) Advances in Proof-Theoretic Semantics. Trends in Logic, vol. 43, pp. 253–283. Springer, Cham (2016)CrossRefGoogle Scholar
  27. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics: An Introduction, vol. 1. North-Holland, Amsterdam (1988)Google Scholar
  28. van Dalen, D.: Logic and Structure, 5th edn. Springer, London (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of TübingenTübingenGermany

Personalised recommendations