Fundamental Issues of Artificial Intelligence pp 141-159 | Cite as
Information, Computation, Cognition. Agency-Based Hierarchies of Levels
- 2 Citations
- 3.8k Downloads
Abstract
This paper connects information with computation and cognition via concept of agents that appear at variety of levels of organization of physical/chemical/cognitive systems – from elementary particles to atoms, molecules, life-like chemical systems, to cognitive systems starting with living cells, up to organisms and ecologies. In order to obtain this generalized framework, concepts of information, computation and cognition are generalized. In this framework, nature can be seen as informational structure with computational dynamics, where an (info-computational) agent is needed for the potential information of the world to actualize. Starting from the definition of information as the difference in one physical system that makes a difference in another physical system – which combines Bateson and Hewitt’s definitions, the argument is advanced for natural computation as a computational model of the dynamics of the physical world, where information processing is constantly going on, on a variety of levels of organization. This setting helps us to elucidate the relationships between computation, information, agency and cognition, within the common conceptual framework, with special relevance for biology and robotics.
Keywords
Information Computation Cognition Natural computation Morphological computing Morphogenesis Embodied computationReferences
- Allo, P. (2008). Formalising the “no information without data-representation” principle. In A. Briggle, K. Waelbers, & P. A. E. Brey (Eds.), Proceedings of the 2008 conference on current issues in computing and philosophy (pp. 79–90). Amsterdam: Ios Press.Google Scholar
- Bateson, G. (1972). In P. Adriaans & J. Benthem van (Eds.), Steps to an ecology of mind: Collected essays in anthropology, psychiatry, evolution, and epistemology (pp. 448–466). Amsterdam: University Of Chicago Press.Google Scholar
- Ben-Jacob, E. (2008). Social behavior of bacteria: From physics to complex organization. The European Physical Journal B, 65(3), 315–322.CrossRefGoogle Scholar
- Ben-Jacob, E. (2009). Bacterial complexity: More is different on all levels. In S. Nakanishi, R. Kageyama, & D. Watanabe (Eds.), Systems biology – The challenge of complexity (pp. 25–35). Tokyo/Berlin/Heidelberg/New York: Springer.Google Scholar
- Ben-Jacob, E., Shapira, Y., & Tauber, A. I. (2011). Smart bacteria. In L. Margulis, C. A. Asikainen, & W. E. Krumbein (Eds.), Chimera and consciousness. Evolution of the sensory self. Cambridge/Boston: MIT Press.Google Scholar
- Ben-Naim, A. (2008). A farewell to entropy: Statistical thermodynamics based on information. Singapore/London/Hong Kong: World Scientific.CrossRefGoogle Scholar
- Bonsignorio, F. (2013). Quantifying the evolutionary self-structuring of embodied cognitive networks. Artificial Life, 19(2), 267–289.CrossRefGoogle Scholar
- Burgin, M. (2010). Theory of information: Fundamentality, diversity and unification (pp. 1–400). Singapore: World Scientific Pub Co.Google Scholar
- Burgin, M., & Dodig-Crnkovic, G. (2011). Information and computation – Omnipresent and pervasive. In Information and computation (pp. vii–xxxii). New York/London/Singapore: World Scientific Pub Co Inc.Google Scholar
- Burgin, M., & Dodig-Crnkovic, G. (2013). Typologies of computation and computational models. Arxiv.org, arXiv:1312.Google Scholar
- Cantwell Smith, B. (1998). On the origin of objects. Cambridge, MA: MIT Press.Google Scholar
- Chaitin, G. (2007). Epistemology as information theory: From Leibniz to Ω. In G. Dodig Crnkovic (Ed.), Computation, information, cognition – The nexus and the liminal (pp. 2–17). Newcastle: Cambridge Scholars Pub.Google Scholar
- Chiribella, G., D’Ariano, G. M., & Perinotti, P. (2012). Quantum theory, namely the pure and reversible theory of information. Entropy, 14, 1877–1893.CrossRefGoogle Scholar
- Deacon, T. (2011). Incomplete nature. How mind emerged from matter. New York/London: W. W. Norton & Company.Google Scholar
- Denning, P. (2007). Computing is a natural science. Communications of the ACM, 50(7), 13–18.CrossRefGoogle Scholar
- Dodig-Crnkovic, G. (2006). Investigations into information semantics and ethics of computing (pp. 1–33). Västerås: Mälardalen University Press.Google Scholar
- Dodig-Crnkovic, G. (2008). Knowledge generation as natural computation. Journal of Systemics, Cybernetics and Informatics, 6(2), 12–16.Google Scholar
- Dodig-Crnkovic, G. (2010). In J. Vallverdú (Ed.), Biological information and natural computation. Hershey: Information Science Reference.Google Scholar
- Dodig-Crnkovic, G. (2012a). Info-computationalism and morphological computing of informational structure. In P. L. Simeonov, L. S. Smith, & A. C. Ehresmann (Eds.), Integral biomathics. Tracing the road to reality. Berlin/Heidelberg: Springer.Google Scholar
- Dodig-Crnkovic, G. (2012b). Information and energy/matter. Information, 3(4), 751–755.CrossRefGoogle Scholar
- Dodig-Crnkovic, G. (2012c). Physical computation as dynamics of form that glues everything together. Information, 3(2), 204–218.CrossRefGoogle Scholar
- Dodig-Crnkovic, G. (2012d). The info-computational nature of morphological computing. In V. C. Müller (Ed.), Theory and philosophy of artificial intelligence (SAPERE, pp. 59–68). Berlin: Springer.Google Scholar
- Dodig-Crnkovic, G. (2014a). Info-computational constructivism and cognition. Constructivist Foundations, 9(2), 223–231.Google Scholar
- Dodig-Crnkovic, G. (2014b). Modeling life as cognitive info-computation. In A. Beckmann, E. Csuhaj-Varjú, & K. Meer (Eds.), Computability in Europe 2014 (LNCS, pp. 153–162). Berlin/Heidelberg: Springer.Google Scholar
- Dodig-Crnkovic, G., & Giovagnoli, R. (2013). Computing nature. Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
- Dodig-Crnkovic, G., & Hofkirchner, W. (2011). Floridi’s open problems in philosophy of information, ten years after. Information, 2(2), 327–359.CrossRefGoogle Scholar
- Dodig-Crnkovic, G., & Müller, V. (2011). A dialogue concerning two world systems: Info-computational vs. mechanistic. In G. Dodig Crnkovic & M. Burgin (Eds.), Information and computation (pp. 149–184). Singapore/Hackensack: World Scientific.CrossRefGoogle Scholar
- Fisher, J., & Henzinger, T. A. (2007). Executable cell biology. Nature Biotechnology, 25(11), 1239–1249.CrossRefGoogle Scholar
- Fredkin, E. (1992). Finite nature. Proceedings of the XXVIIth Rencotre de Moriond, Les Arcs, Savoie, France.Google Scholar
- Goyal, P. (2012). Information physics – Towards a new conception of physical reality. Information, 3, 567–594.CrossRefGoogle Scholar
- Hawkins, J., & Blakeslee, S. (2005). On intelligence. New York: Times Books, Henry Holt and Co.Google Scholar
- Hewitt, C. (2007). What is commitment? Physical, organizational, and social. In P. Noriega, J. Vazquez-Salceda, G. Boella, O. Boissier, & V. Dign (Eds.), Coordination, organizations, institutions, and norms in agent systems II (pp. 293–307). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
- Hewitt, C. (2010). Actor model for discretionary, adaptive concurrency. CoRR, abs/1008.1. Retrieved from http://arxiv.org/abs/1008.1459
- Hewitt, C. (2012). What is computation? Actor model versus Turing’s model. In H. Zeni (Ed.), A computable universe, understanding computation & exploring nature as computation. Singapore: World Scientific Publishing Company/Imperial College Press.Google Scholar
- Hewitt, C., Bishop, P., & Steiger, P. (1973). A universal modular ACTOR formalism for artificial intelligence. In N. J. Nilsson (Ed.), IJCAI – Proceedings of the 3rd International Joint Conference on Artificial Intelligence (pp. 235–245). Standford: William Kaufmann.Google Scholar
- Hinton, G. (2006). To recognize shapes, first learn to generate images, UTML TR 2006–004.Google Scholar
- Hinton, G., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527–1554.CrossRefGoogle Scholar
- Kampis, G. (1991). Self-modifying systems in biology and cognitive science: A new framework for dynamics, information, and complexity (pp. 1–564). Amsterdam: Pergamon Press.CrossRefGoogle Scholar
- Kauffman, S. (1993). Origins of order: Self-organization and selection in evolution. New York: Oxford University Press.Google Scholar
- Kauffman, S. (1995). At home in the universe: The search for laws of self-organization and complexity. New York: Oxford University Press.Google Scholar
- Kauffman, S. (2000). Investigations. New York/London: Oxford University Press.Google Scholar
- Kauffman, S., Logan, R., Este, R., Goebel, R., Hobill, D., & Shmulevich, I. (2008). Propagating organization: An enquiry. Biology and Philosophy, 23(1), 27–45.CrossRefGoogle Scholar
- Landauer, R. (1991). Information is physical. Physics Today, 44, 23–29.CrossRefGoogle Scholar
- Lloyd, S. (2006). Programming the universe: A quantum computer scientist takes on the cosmos. New York: Knopf.Google Scholar
- Lungarella, M., & Sporns, O. (2005). Information self-structuring: Key principle for learning and development. In Proceedings of 2005 4th IEEE Int. Conference on Development and Learning (pp. 25–30).Google Scholar
- MacLennan, B. J. (2010). Morphogenesis as a model for nano communication. Nano Communication Networks, 1(3), 199–208.CrossRefGoogle Scholar
- MacLennan, B. J. (2011). Artificial morphogenesis as an example of embodied computation. International Journal of Unconventional Computing, 7(1–2), 3–23.Google Scholar
- Maldonado, C. E., & Gómez Cruz, A. N. (2014). Biological hypercomputation: A new research problem in complexity theory. Complexity, wileyonline (1099–0526). doi: 10.1002/cplx.21535.Google Scholar
- Matsuno, K., & Salthe, S. (2011). Chemical affinity as material agency for naturalizing contextual meaning. Information, 3(1), 21–35.Google Scholar
- Maturana, H., & Varela, F. (1980). Autopoiesis and cognition: The realization of the living. Dordrecht/Holland: D. Reidel Pub. Co.CrossRefGoogle Scholar
- Maturana, H., & Varela, F. (1992). The tree of knowledge. Boston: Shambala.Google Scholar
- Nunes de Castro, L., Silveira Xavier, R., Pasti, R., Dourado Maia, R., Szabo, A., & Ferrari, D. G. (2011). The grand challenges in natural computing research: The quest for a new science. International Journal of Natural Computing Research (IJNCR), 2(4), 17–30.CrossRefGoogle Scholar
- Pfeifer, R., & Bongard, J. (2006). How the body shapes the way we think – A new view of intelligence. Cambridge, MA: MIT Press.Google Scholar
- Pfeifer, R., Lungarella, M., & Iida, F. (2007). Self-organization, embodiment, and biologically inspired robotics. Science, 318, 1088–1093.CrossRefGoogle Scholar
- Pombo, O., Torres, J. M., & Symons J, R. S. (Eds.). (2012). Special sciences and the unity of science (Logic, Epi.). Berlin/Heidelberg: Springer.Google Scholar
- Rössler, O. (1998). Endophysics: The world as an interface. Singapore/London/Hong Kong: World Scientific.CrossRefGoogle Scholar
- Rozenberg, G., Bäck, T., & Kok, J. N. (Eds.). (2012). Handbook of natural computing. Berlin/Heidelberg: Springer.Google Scholar
- Salthe, S. (2012a). Hierarchical structures. Axiomathes, 22(3), 355–383.CrossRefGoogle Scholar
- Salthe, S. (2012b). Information and the regulation of a lower hierarchical level by a higher one. Information, 3, 595–600.CrossRefGoogle Scholar
- Shapiro, J. A. (2011). Evolution: A view from the 21st century. New Jersey: FT Press Science.Google Scholar
- Sloman, A. (2013a). Meta-morphogenesis. Retrieved from http://www.cs.bham.ac.uk/research/projects/cogaff/misc/meta-morphogenesis.html
- Sloman, A. (2013b). Meta-morphogenesis: Evolution and development of information-processing machinery. In S. B. Cooper & J. van Leeuwen (Eds.), Alan Turing: His work and impact (p. 849). Amsterdam: Elsevier.Google Scholar
- Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. In D. E. Rumelhart, J. L. McClelland, & PDP Research Group (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (pp. 194–281). Cambridge, MA: MIT Press.Google Scholar
- Stepney, S. (2008). The neglected pillar of material computation. Physica D: Nonlinear Phenomena, 237(9), 1157–1164.CrossRefGoogle Scholar
- Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London, 237(641), 37–72.CrossRefGoogle Scholar
- Ulanowicz, R. E. (2009). A third window: Natural life beyond Newton and Darwin. West Conshohocken: Templeton Foundation Press.Google Scholar
- Valiant, L. (2013). Probably approximately correct: Nature’s algorithms for learning and prospering in a complex world. New York: Basic Books.Google Scholar
- van Benthem, J., & Adriaans, P. (2008). Philosophy of information. Amsterdam: North Holland.Google Scholar
- Vedral, V. (2010). Decoding reality: The universe as quantum information (pp. 1–240). Oxford: Oxford University Press.Google Scholar
- von Baeyer, H. (2004). Information: The new language of science. Cambridge, MA: Harvard University Press.Google Scholar
- Wheeler, J. A. (1990). Information, physics, quantum: The search for links. In W. Zurek (Ed.), Complexity, entropy, and the physics of information. Redwood City: Addison-Wesley.Google Scholar
- Wolfram, S. (2002). A new kind of science. Wolfram Media. Retrieved from http://www.wolframscience.com/
- Xavier, R. S., Omar, N., & de Castro, L. N. (2011). Bacterial colony: Information processing and computational behavior. In Nature and biologically inspired computing (NaBIC), 2011 Third World Congress on, pp. 439–443, 19–21 Oct 2011. doi: 10.1109/NaBIC.2011.6089627. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6089627&isnumber=6089255
- Zeilinger, A. (2005). The message of the quantum. Nature, 438(7069), 743.CrossRefGoogle Scholar
- Zuse, K. (1970). Calculating space. Translation of “Rechnender Raum”. Cambridge, MA: MIT Technical Translation.Google Scholar