Skip to main content

Modelling of the Wind Turbine Generator and the Power Electronic Grid Simulator

  • Chapter
  • First Online:
  • 1408 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The description of the National Renewable Energy Laboratory’s (NREL’s) grid simulator (referred to as controllable grid interface, CGI) and the commercial multi-megawatt sized type 4 wind turbine generator (WTG) was given in Chap. 7. This chapter focusses on the time domain modelling of the CGI and the WTG. The models of the power electronic devices (PEDs) are implemented in PSCAD/EMTDC. The obtained test results are used to evaluate the time domain models of NREL’s test setup including the PEDs in Chap. 9.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P.B. Brogan, E. Grondahl, R. Jones, H. Stiesdal, Power converters, US Patent 7,372,174, May 2008

    Google Scholar 

  2. International Electrotechnical Commission, IEC 61400-27—Electrical simulation models for wind power generation Wind Turbines, 1st edn. 2012

    Google Scholar 

  3. P. Delarue, A. Bouscayrol, A. Tounzi, X. Guillaud, G. Lancigu, Modelling, control and simulation of an overall wind energy conversion system. Renew. Energy 28(8), 1169–1185 (2003)

    Article  Google Scholar 

  4. J. Slootweg, H. Polinder, W. Kling, Representing wind turbine electrical generating systems in fundamental frequency simulations. IEEE Trans. Energy Convers. 18(4), 516–524 (2003)

    Article  Google Scholar 

  5. D.J. Trudnowski, A. Gentile, J.M. Khan, E.M. Petritz, Fixed-speed wind-generator and wind-park modeling for transient stability studies. IEEE Trans. Power Syst. 19(4), 1911–1917 (2004)

    Article  Google Scholar 

  6. M.P. Kazmierkowski, L. Malesani, Current control techniques for three-phase voltage-source PWM converters: a survey. IEEE Trans. Ind. Electron. 45(5), 691–703 (1998)

    Article  Google Scholar 

  7. A. Tripathi, P.C. Sen, Comparative analysis of fixed and sinusoidal band hysteresis current controllers for voltage source inverters. IEEE Trans. Indus. Electron. 39(1), 63–73 (1992)

    Article  Google Scholar 

  8. Manitoba HVDC Research Center, EMTDC Transient Analysis for PSCAD Power System Simulation. 2010

    Google Scholar 

  9. J. Glasdam, J. Hjerrild, L. H. Kocewiak, C. L. Bak, L. Zeni, Comparison of field measurements and EMT simulation results on a multi-level STATCOM for grid integration of London Array Wind Farm, in Cigré Paris Session, 2014, p. B4_206_2014

    Google Scholar 

  10. S.K. Chaudhary, R. Teodorescu, P. Rodriguez, P.C. Kjaer, A.M. Gole, Negative sequence current control in wind power plants with VSC-HVDC connection. IEEE Trans. Sustain. Energy 3(3), 535–544 (2012)

    Article  Google Scholar 

  11. S. K. Chaudhary, Control and Protection of Wind Power Plants with VSC-HVDC Connection, Ph.D. Thesis (Aalborg University, Aalborg, Denmark, 2011)

    Google Scholar 

  12. A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez, F. Blaabjerg, Evaluation of current controllers for distributed power generation systems. IEEE Trans. Power Electron. 24(3), 654–664 (2009)

    Article  Google Scholar 

  13. D.N. Zmood, D.G. Holmes, G.H. Bode, Frequency-domain analysis of three-phase linear current regulators. IEEE Trans. Ind. Appl. 37(2), 601–610 (2001)

    Article  Google Scholar 

  14. L. Kocewiak, Harmonics in large offshore wind farms, Ph.D. Thesis, (Department of Energy Technology, Aalborg University, Aalborg, 2012)

    Google Scholar 

  15. M. Liserre, R. Teodorescu, F. Blaabjerg, Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values. IEEE Trans. Power Electron. 21(1), 263–272 (2006)

    Article  Google Scholar 

  16. H.-S. Song, K. Nam, Dual current control scheme for PWM converter under unbalanced input voltage conditions. IEEE Trans. Ind. Electron. 46(5), 953–959 (1999)

    Article  Google Scholar 

  17. P. Rioual, H. Pouliquen, J.-P. Louis, Regulation of a PWM rectifier in the unbalanced network state using a generalized model. IEEE Trans. Power Electron. 11(3), 495–502 (1996)

    Article  Google Scholar 

  18. G. Saccomando, J. Svensson, Transient operation of grid-connected voltage source converter under unbalanced voltage conditions, in Industry Applications Conference, 2001. Thirty-Sixth IAS Annual Meeting. Conference Record of the 2001 IEEE, vol. 4, 2001, pp. 2419–2424

    Google Scholar 

  19. P. Brogan, The stability of multiple, high power, active front end voltage sourced converters when connected to wind farm collector systems, in Proceedings of the 2010 EPEC, 2010

    Google Scholar 

  20. R. Nelson, H. Ma, N. Goldenbaum, Fault ride-through capabilities of siemens full-converter wind turbines, in Power and Energy Society General Meeting, 2011 IEEE, 2011, pp. 1–5

    Google Scholar 

  21. D. Roiu, R.I. Bojoi, L.R. Limongi, A. Tenconi, New stationary frame control scheme for three-phase PWM rectifiers under unbalanced voltage dips conditions. IEEE Trans. Ind. Appl. 46(1), 268–277 (2010)

    Article  Google Scholar 

  22. L. Xu, B.R. Andersen, P. Cartwright, VSC transmission operating under unbalanced AC conditions-analysis and control design. IEEE Trans. Power Delivery 20(1), 427–434 (2005)

    Article  Google Scholar 

  23. H. Akagi, E. H. Watanabe, M. Aredes, Instantaneous power theory and applications to power conditioning, vol. 31 (Wiley, New York, 2007)

    Google Scholar 

  24. D.G. Holmes, T.A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice. (IEEE Press, 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glasdam, J.B. (2016). Modelling of the Wind Turbine Generator and the Power Electronic Grid Simulator. In: Harmonics in Offshore Wind Power Plants. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-26476-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26476-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26475-2

  • Online ISBN: 978-3-319-26476-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics