Simulating LTE/LTE-Advanced Networks with SimuLTE

  • Antonio Virdis
  • Giovanni Stea
  • Giovanni Nardini
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 402)


In this work we present SimuLTE, an OMNeT++-based simulator for LTE and LTE-Advanced networks. Following well-established OMNeT++ programming practices, SimuLTE exhibits a fully modular structure, which makes it easy to be extended, verified, and integrated. Moreover, it inherits all the benefits of such a widely used and versatile simulation framework as OMNeT++, i.e., experiment support and seamless integration with the OMNeT++ network modules, such as INET. This allows SimuLTE users to build up mixed scenarios where LTE is only a part of a wider network. This paper describes the architecture of SimuLTE, with particular emphasis on the modeling choices at the MAC layer, where resource scheduling is located. Furthermore, we describe some of the verification and validation efforts and present an example of the performance analysis that can be carried out with SimuLTE.


LTE LTE-advanced System-level simulator OMNeT++ 



We would like to thank all those who have contributed to the SimuLTE code as former students of the University of Pisa, namely Matteo Maria Andreozzi of NVIDIA, UK, Daniele Migliorini of Aruba, Italy, Giovanni Accongiagioco of CNR, Italy, Generoso Pagano of INRIA Grenoble Rhône-Alpes, France, Vincenzo Maria Pii of ZHAW, Switzerland. Many thanks also to Andras Varga, Rudolf Hornig, Levente Mészáros and Gábor Tabi of SimulCraft for support and discussion on the code.


  1. 1.
    3GPP—TS 36.300. Evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (E-UTRAN). Overall description; Stage 2Google Scholar
  2. 2.
    3GPP—TS 36.913. Requirements for further advancements for evolved universal terrestrial radio access (E-UTRA) (LTE-Advanced)Google Scholar
  3. 3.
    Mehlfuerer, C., Wrulich, M., Ikuno, J.C., Bosanska D., Rupp, M.: Simulating the long term evolution physical layer. In: Proceedings of the 17th EUSIPCO, Glasgow, UK (2009)Google Scholar
  4. 4.
    Bouras, C., Diles, G., Kokkinos, V., Kontodimas, K., Papazois, A.: A Simulation Framework for Evaluating Interference Mitigation Techniques in Heterogeneous Cellurar Environments. Wireless Personal Communications, Springer (2013)Google Scholar
  5. 5.
    Ikuno, J.C., Wrulich, M., Rupp, M.: System level simulation of LTE networks. In: Proceedings of IEEE VTC-Spring, Taipei, Taiwan, pp. 1–5. May 2010Google Scholar
  6. 6.
    Piro, G., Grieco, L.A., Boggia, G., Capozzi, F., Camarda, P.: Simulating LTE cellular systems: an open-source framework. IEEE Trans. Veh. Technol. 60(2), (2011)Google Scholar
  7. 7.
    Perrone, L.F., Cicconetti, C., Stea, G., Ward, B.: On the automation of computer network simulators. In: Proceedings of SIMUTools’09, Rome, Italy, 3–5 March 2009Google Scholar
  8. 8.
    Kurkowski, S., Camp, T., Colagrosso, M.: MANET simulation studies: the incredibles. ACM SIGMOBILE MCCR 9(4), 50–61 (2005)Google Scholar
  9. 9.
    Ns-3 homepage. Accessed April 2014
  10. 10.
    Baldo, N., Miozzo, M., Requena-Esteso, M., Nin-Guerrero, J.: An open source product-oriented LTE network simulator based on ns-3. In: Proceedings of ACM MSWiM’11, Miami, US, Nov 2011Google Scholar
  11. 11.
    Perrone, L.F., Main, C., Ward, B.C.: SAFE: simulation automation framework for experiments. In: Proceedings of IEEE WSC 2012, Berlin, DE, 9–12 Dec 2012Google Scholar
  12. 12.
    Gomez, I.: libLTE: Open source 3GPP LTE library. (Oct 2013)
  13. 13.
    Wojtowicz, B.: openLTE: an open source 3GPP LTE implementation. (Sept 2014)
  14. 14.
  15. 15.
    Varga, A., Hornig, R.: An overview of the OMNeT++ simulation environment. In: Proceedings of the SIMUTools ‘08, Marseille, France, March 2008Google Scholar
  16. 16.
    Weingartner, E., Vom Lehn, H., Wehrle, K.: A performance comparison of recent network simulators. In: Proceedings of IEEE ICC’09, Dresden, DE, 14–18 June 2009Google Scholar
  17. 17.
    3GPP—TS 36.322. Radio link control (RLC) protocol specificationGoogle Scholar
  18. 18.
    3GPP—TS 36.321. Medium access control (MAC) protocol specificationGoogle Scholar
  19. 19.
    3GPP—TS 36.213. Physical layer proceduresGoogle Scholar
  20. 20.
    Jakes, W.C.: Microwave Mobile Communications. Wiley (1975)Google Scholar
  21. 21.
    Zhou, D., Baldo, N., Miozzo, M.: Implementation and validation of LTE downlink schedulers for ns-3. In: Proceedings of SIMUTools ‘13, Cannes, France, March 3013Google Scholar
  22. 22.
    Fantini, R., Sabella, D., Caretti, M.: An E3F based assessment of energy efficiency of relay nodes in LTE-advanced networks. In: Proceedings of IEEE PIMRC 2011, pp. 182–186. 11–14 Sept 2011Google Scholar
  23. 23.
    Accongiagioco, G., Andreozzi, M.M., Migliorini, D., Stea, G.: Throughput-optimal resource allocation in LTE-advanced with distributed antennas. Comput. Netw. 57, 3997–4009 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Antonio Virdis
    • 1
  • Giovanni Stea
    • 1
  • Giovanni Nardini
    • 1
  1. 1.Dipartimento di Ingegneria dell’InformazioneUniversity of PisaPisaItaly

Personalised recommendations