Skip to main content

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 100))

Abstract

Threshold selection is a critical preprocessing step for image analysis, pattern recognition and computer vision. On the other hand Differential Evolution (DE) is a heuristic method for solving complex optimization problems, yielding promising results. DE is easy to use, keeps a simple structure and holds acceptable convergence properties and robustness. In this chapter, an automatic image multi-threshold approach based on differential evolution optimization is presented. Hereby the segmentation process is considered to be similar to an optimization problem. First, the algorithm approximates the 1-D histogram of the image using a mixture of Gaussian functions whose parameters are calculated using the differential evolution method. Each Gaussian function approximating the histogram represents a pixel class and therefore a threshold point. The resultant approach is not only computationally efficient but also does not require prior assumptions whatsoever about the image. The method is likely to be most useful for applications considering different and perhaps initially unknown image classes. Experimental results demonstrate the algorithm’s ability to perform automatic threshold selection while preserving main features from the original image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abak, T., Baris, U., Sankur, B.: The performance of thresholding algorithms for optical character recognition. In: Proceedings of International Conference on Document Analytical Recognition 1997, pp. 697–700 (1997)

    Google Scholar 

  2. Kamel, M., Zhao, A.: Extraction of binary character/graphics images from grayscale document images. Graph. Models Image Process. 55(3), 203–217 (1993)

    Article  Google Scholar 

  3. Trier, O.D., Jain, A.K.: Goal-directed evaluation of binarization methods. IEEE Trans. Pattern Anal. Mach. Intell. 17(12), 1191–1201 (1995)

    Article  Google Scholar 

  4. Bhanu, B.: Automatic target recognition: state ofthe art survey. IEEE Trans. Aerosp. Electron. Syst. 22, 364–379 (1986)

    Article  Google Scholar 

  5. Sezgin, M., Sankur, B.: Comparison of thresholding methods for non-destructive testing applications. In: IEEE International Conference on Image Processing 2001, pp. 764–767 (2001)

    Google Scholar 

  6. Sezgin, M., Tasaltin, R.: A new dichotomization technique to multilevel thresholding devoted to inspection applications. Pattern Recogn. Lett. 21(2), 151–161 (2000)

    Article  Google Scholar 

  7. Guo, R., Pandit, S.M.: Automatic threshold selection based on histogram modes and discriminant criterion. Mach. Vis. Appl. 10, 331–338 (1998)

    Article  Google Scholar 

  8. Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recogn. 26, 1277–1294 (1993)

    Article  Google Scholar 

  9. Shaoo, P.K., Soltani, S., Wong, A.K.C., Chen, Y.C.: Survey: a survey of thresholding techniques. Comput. Vis. Graph. Image Process. 41, 233–260 (1988)

    Article  Google Scholar 

  10. Snyder, W., Bilbro, G., Logenthiran, A., Rajala, S.: Optimal thresholding: a new approach. Pattern Recogn. Lett. 11, 803–810 (1990)

    Article  MATH  Google Scholar 

  11. Chen, S., Wang, M.: Seeking multi-thresholds directly from support vectors for image segmentation. Neurocomputing 67(4), 335–344 (2005)

    Article  Google Scholar 

  12. Chih-Chih, L.: A novel image segmentation approach based on particle swarm optimization. IEICE Trans. Fundam. 89(1), 324–327 (2006)

    Google Scholar 

  13. Gonzalez, R.C., Woods, R.E.: Digital image processing. Addison Wesley, Reading, MA (1992)

    Google Scholar 

  14. Storn, R.M., Price, K.V.: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Price, K.V., Storn, R.M., Lampinen, J.: Differential evolution: a practical approach to global optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  16. Chang, W.D.: Parameter identification of rossler’s chaotic system by an evolutionary algorithm. Chaos, Solutions Fractals 29(5), 1047–1053 (2006)

    Article  Google Scholar 

  17. Liu, B., Wang, L., Jin, Y.H., Huang, D.X., Tang, F.: Control and synchronization of chaotic systems by differential evolution algorithm. Chaos, Solutions Fractals 34(2), 412–419 (2007)

    Article  MATH  Google Scholar 

  18. Baştürk, A., Günay, E.: Efficient edge detection in digital images using a cellular neural network optimized by differential evolution algorithm. Expert Syst. Appl. 36(8), 2645–2650 (2009)

    Article  Google Scholar 

  19. Lai, C.-C., Tseng, D.-C.: An optimal L-filter for reducing blocking artifacts using genetic algorithms. Signal Process. 81(7), 1525–1535 (2001)

    Article  MATH  Google Scholar 

  20. Tseng, D.-C., Lai, C.-C.: A genetic algorithm for MRF-based segmentation of multispectral textured images. Pattern Recogn. Lett. 20(14), 1499–1510 (1999)

    Article  Google Scholar 

  21. Price, K.V.: Differential evolution: a fast and simple numerical optimizer. In: IEEE Biennial Conference of the North American Fuzzy Information Processing Society, NAFIPS, Berkeley, CA, pp. 524–527 (1996)

    Google Scholar 

  22. Franco, G., Betti, R., Lus, H.: Identification of structural systems using an evolutionary strategy. Eng. Mech. 130(10), 1125–1139 (2004)

    Article  Google Scholar 

  23. Koziel, S., Michalewicz, Z.: Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evol. Comput. 7(1), 19–44 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Cuevas .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cuevas, E., Zaldívar, D., Perez-Cisneros, M. (2016). Image Segmentation Based on Differential Evolution Optimization. In: Applications of Evolutionary Computation in Image Processing and Pattern Recognition. Intelligent Systems Reference Library, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-26462-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26462-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26460-8

  • Online ISBN: 978-3-319-26462-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics