Skip to main content

Adaptive Tracking Approach of Flexible Cable Conduit-Actuated NOTES Systems for Early Gastric Cancer Treatments

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 370)

Abstract

To control robotic arms mounted on a flexible endoscope in Natural Orifice Transluminal Endoscopic Surgery (NOTES) procedure, Cable-Conduit Mechanisms (CCMs) are often used. Although the CCMs offer simplicity, safety, and easy transmission, nonlinear friction and backlash-like hysteresis between the cable and the conduit introduce some difficulties in the motion control of the NOTES system. It is challenging to achieve the precise position of robotic arms and force feedback information when the slave manipulator is inside the humans body. This paper presents the dynamic transmission characteristics of CCMs and control strategies to compensate for achieving precise position tracking of the robotic arms. The cable-conduit tension and position transmission are analysed and discussed for both sliding and presliding regimes. Unlike current approaches in the literature, position transmission of the CCM is modelled by an approximation of backlash-like hysteresis profile for both loading and unloading phases. In addition, nonlinear adaptive control algorithm is also used to enhance the tracking performance for a pair of CCMs regardless of the change of cable-conduit configuration during the operation. The backlash-like hysteresis parameters are online estimated under an assumption of presence of output feedback and unknown bound of nonlinear parameters. To validate the proposed approach, a prototype of single-DOF-flexible robotic system, which consists of a motion control device, a telesurgical workstation, and a slave manipulator, is also developed. The proposed compensation scheme is experimentally validated using the designed system. The results show that the proposed control scheme improves the tracking performances significantly regardless of the change of endoscope configuration.

Keywords

  • Surgical robot
  • Cable-conduit mechanism
  • Nonlinear adaptive control
  • Flexible endoscope
  • Dynamic friction
  • Backlash
  • Hysteresis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-26453-0_5
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-26453-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Zhang, Z., Xu, S., Zhang, B.: Asymptotic tracking control of uncertain nonlinear systems with unknown actuator nonlinearity. IEEE Trans. Autom. Control 59(5), 1336–1341 (2014)

    CrossRef  MathSciNet  Google Scholar 

  2. Ott, L., Nageotte, F., Zanne, P., de Mathelin, M.: Robotic assistance to exible endoscopy by physiological-motion tracking. IEEE Trans. Rob. 27(2), 346–359 (2011)

    CrossRef  Google Scholar 

  3. Clark, M.P., Qayed, E.S., Kooby, D.A., Maithel, S.K., Willingham, F.F.: Natural orice translumenal endoscopic surgery in humans: a review. Minim. Invasive Surg (2012)

    Google Scholar 

  4. Kaneko, M., Paetsch, W., Tolle, H.: Input-dependent stability of joint torque control of tendon-driven robot hands. IEEE Trans. Ind. Electron. 39(2), 96–104 (1992)

    CrossRef  Google Scholar 

  5. Palli, G., Borghesan, G., Melchiorri, C.: Modeling, identication, and control of tendon-based actuation systems. IEEE Trans. Rob. 28(2), 277–290 (2012)

    CrossRef  Google Scholar 

  6. Chiang, L.S., Jay, P.S., Valdastri, P., Menciassi, A., Dario, P.: Tendon sheath analysis for estimation of distal end force and elongation. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 332–337 (2009)

    Google Scholar 

  7. Phee, S.J., Low, S., Dario, P., Menciassi, A.: Tendon sheath analysis for estimation of distal end force and elongation for sensorless distal end. Robotica 28(07), 1073–1082 (2010)

    CrossRef  Google Scholar 

  8. Sun, Z., Wang, Z., Phee, S.J.: Elongation modeling and compensation for the exible tendonsheath system. IEEE/ASME Trans. Mechatron. 19(4), 1243–1250 (2014)

    CrossRef  Google Scholar 

  9. Agrawal, V., Peine, W.J., Yao, B.: Modeling of transmission characteristics across a cable-conduit system. IEEE Trans. Rob. 26(5), 914–924 (2010)

    CrossRef  Google Scholar 

  10. Do, T.N., Tjahjowidodo, T., Lau, M.W.S., Phee, S.J.: Dynamic friction model for tendon-sheath actuated surgical robots: modelling and stability analysis. In: ISRM 2013-Proceedings of the 3rd International Symposium on Robotics and Mechatronics, Singapore, pp. 302–311 (2013)

    Google Scholar 

  11. Do, T.N., Tjahjowidodo, T., Lau, M.W.S., Phee, S.J.: Nonlinear modeling and parameter identication of dynamic friction model in tendon sheath for exible endoscopic systems. In: ICINCO 2013-Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics, Reykjavik, Iceland, pp. 5–10 (2013)

    Google Scholar 

  12. Do, T.N., Tjahjowidodo, T., Lau, M.W.S., Phee, S.J.: An investigation of friction-based tendon sheath model appropriate for control purposes. Mech. Syst. Sig. Proc. 42(1–2), 97–114 (2014)

    CrossRef  Google Scholar 

  13. Do, T.N., Tjahjowidodo, T., Lau, M.W.S., Phee, S.J.: Dynamic friction-based force feedback for tendon-sheath mechanism in notes system. Int. J. Comput. Electr. Eng. 6(3), 252–258 (2014)

    CrossRef  Google Scholar 

  14. Bardou, B., Nageotte, F., Zanne, P., De Mathelin, M.: Improvements in the control of a exible endoscopic system. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3725–3732. Saint Paul, MN (2012)

    Google Scholar 

  15. Kesner, S., Howe, R.: Position control of motion compensation cardiac catheters. IEEE Trans. Rob. 27(6), 1045–1055 (2011)

    CrossRef  Google Scholar 

  16. Kesner, S.B., Howe, R.D.: Robotic catheter cardiac ablation combining ultrasound guidance and force control. Int. J. Robot. Res. 33(4), 631–644 (2014)

    CrossRef  Google Scholar 

  17. Reilink, R., Stramigioli, S., Misra, S.: Image-based hysteresis reduction for the control of exible endoscopic instruments. Mechatronics 23(6), 652–658 (2013)

    CrossRef  Google Scholar 

  18. Su, C.-Y., Stepanenko, Y., Svoboda, J., Leung, T.: Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control 45(12), 2427–2432 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. Hu, C., Yao, B., Wang, Q.: Performance oriented adaptive robust control of a class of nonlinear systems preceded by unknown dead zone with comparative experimental results. IEEE/ASME Trans. Mechatron. 18(1), 178–189 (2013)

    Google Scholar 

  20. Tao, G., Kokotovic, P.: Adaptive control of system with unknown output backlash. IEEE Trans. Autom. Control 40(2), 326–330 (1995)

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Agrawal, V., Peine, W., Yao, B., Choi, S.: Control of cable actuated devices using smooth backlash inverse. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1074–1079. Anchorage, AK (2010)

    Google Scholar 

  22. Do, T.N., Tjahjowidodo, T., Lau, M.W.S., Yamamoto, T., Phee, S.J.: Hysteresis modeling and position control of tendon-sheath mechanism in flexible endoscopic systems. Mechatronics 24(1), 12–22 (2014)

    CrossRef  Google Scholar 

  23. Rakotondrabe, M.: Bouc-wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Trans. Autom. Sci. Eng. 8(2), 428–431 (2011)

    CrossRef  Google Scholar 

  24. Hassani, V., Tjahjowidodo, T., Do, T.N.: A survey on hysteresis modeling, identication and control. Mech. Syst. Signal Proc. 49(1), 209–233 (2014)

    CrossRef  Google Scholar 

  25. Minh, T. V., Kamers, B., Tjahjowidodo, T., Ramon, H., Van Brussel, H. Modeling torque-angle hysteresis in a pneumatic muscle manipulator. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1122–1127 (2010)

    Google Scholar 

  26. Minh, T.V., Tjahjowidodo, T., Ramon, H., Van Brussel, H.: A new approach to modeling hysteresis in a pneumatic articial muscle using the maxwell-slip model. IEEE/ASME Trans. Mechatron. 16(1), 177–186 (2011)

    CrossRef  Google Scholar 

  27. Cai, J., Wen, C., Su, H., Liu, Z.: Robust adaptive failure compensation of hysteretic actuators for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 58(9), 2388–2394 (2013)

    CrossRef  MathSciNet  Google Scholar 

  28. Hassani, V., Tjahjowidodo, T.: Structural response investigation of a triangular-based piezoelectric drive mechanism to hysteresis effect of the piezoelectric actuator. Mech. Syst. Signal Proc. 36(1), 210–223 (2013)

    CrossRef  Google Scholar 

  29. Abbott, D., Becke, C., Rothstein, R., Peine, W.: Design of an endoluminal notes robotic system. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pp. 410–416 (2007)

    Google Scholar 

  30. Tjahjowidodo, T., Al-Bender, F., Van Brussel, H.: Quantifying Chaotic responses of mechanical systems with backlash component. Mech. Syst. Signal Process. 21(2), 973–993 (2007)

    CrossRef  Google Scholar 

  31. Tjahjowidodo, T., Al-Bender, F., Van Brussel, H.: Experimental dynamic identification of backlash using skeleton methods. Mech. Syst. Signal Process. 21(2), 959–972 (2007)

    CrossRef  Google Scholar 

  32. Do, T.N., Tjahjowidodo, T., Lau, M.W.S., Phee, S.J.: Adaptive control of position compensation for cable-conduit mechanisms used in flexible surgical robots. In: ICINCO 2014-Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics, Vienna, Austria, pp. 110–117 (2014)

    Google Scholar 

  33. Do, T.N., Tjahjowidodo, T., Lau, M.W.S., Phee, S.J.: A new approach of friction model for Tendon-Sheath actuated surgical systems: nonlinear modelling and parameter identification. Mech. Mach. Theory 85(2015), 14–24 (2015)

    CrossRef  Google Scholar 

  34. Ioannou, P., Sun, J.: Robust adaptive control, vol. 1. PTR Prentice-Hall, Englewood Cliffs (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tegoeh Tjahjowidodo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Do, T.N., Tjahjowidodo, T., Lau, M.W.S., Phee, S.J. (2016). Adaptive Tracking Approach of Flexible Cable Conduit-Actuated NOTES Systems for Early Gastric Cancer Treatments. In: Filipe, J., Gusikhin, O., Madani, K., Sasiadek, J. (eds) Informatics in Control, Automation and Robotics. Lecture Notes in Electrical Engineering, vol 370. Springer, Cham. https://doi.org/10.1007/978-3-319-26453-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26453-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26451-6

  • Online ISBN: 978-3-319-26453-0

  • eBook Packages: EngineeringEngineering (R0)