Advertisement

Game Theoretical Approach for Dynamic Active Patrolling in a Counter-Piracy Framework

Chapter
  • 1k Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 621)

Abstract

Maritime piracy has become an important security focus area due to the influence that this phenomenon has on the global economy (Bowden, The economic costs of maritime piracy. Technical Report. Oceans Beyond Piracy, One Earth Future Foundation, 2011, [1]).

Keywords

Game Theory Maritime piracy DSS Bayesian-Dtackelberg Security game 

References

  1. 1.
    Bowden, A., et al.: The economic costs of maritime piracy. Oceans Beyond Piracy, One Earth Future Foundation, Technical Report (2011)Google Scholar
  2. 2.
    Basilico, N., Gatti, N., Amigoni, F. : Leader-follower strategies for robotic patrolling in environments with arbitrary topologies, In: AAMAS (2009)Google Scholar
  3. 3.
    Agmon, N., Kraus, S., Kaminka, G.A.: Multi-robot perimeter patrol in adversarial settings. In: ICRA, pp. 2339-2345 (2008)Google Scholar
  4. 4.
    Vanek, O., Bosansky, B., Jakob, M., Pechoucek, M.: Transiting areas patrolled by a mobile adversary. Comput. Intell. Games (CIG) (2010)Google Scholar
  5. 5.
    Pita, J., et al.: ARMOR Software: A Game Theoretic Approach for Airport Security (2008)Google Scholar
  6. 6.
    Tsai, J., Rathi, S., Kiekintveld, C., Ordez, F., Tambe, M.: IRIS–A Tool for Strategic Security Allocation in Transportation Networks (2009)Google Scholar
  7. 7.
    An, B., Pita, J., Shieh, E., Tambe, M.: GUARDS and PROTECT: Next Generation Applications of Security Games (2011)Google Scholar
  8. 8.
    Tambe, M.: Security and Game Theory Algorithms, Deployed Systems, Lesson. Springer, New York (2012)Google Scholar
  9. 9.
    Article 101 of the United Nations Convention on the Law of the Sea (UNCLOS) (1982)Google Scholar
  10. 10.
    Kraska, J.: Contemporary Maritime Piracy International Law, Strategy, and Diplomacy at Sea. Praeger, New York (2011)Google Scholar
  11. 11.
    IMO Doc. MSC.4/Circ.164, Reports on Acts of Piracy and Armed Robbery against Ships, at 2, 3 Dec 2010Google Scholar
  12. 12.
    European Union Naval Force. http://eunavfor.eu/ (2015. Accessed 12 Feb 2015
  13. 13.
    BBC News Magazine. http://news.bbc.co.uk/2/hi/uk_news/magazine/8388222.stm (2015). Accessed 12 Feb 2015
  14. 14.
    BBC News Magazine. http://www.bbc.co.uk/news/10401413 (2015). Accessed 12 Feb 2015
  15. 15.
    Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge (1993)Google Scholar
  16. 16.
    Bologna, S., Setola, R.: The need to improve local self-awareness in CIP/CIIP. In: First IEEE International Workshop on Critical Infrastructure Protection. IEEE (2005)Google Scholar
  17. 17.
    Leboucher, C., Chelouah, R., Siarry, P., Le Menec, S.: A swarm intelligence method combined to evolutionary game theory applied to resources allocation problem. In: International Conference on Swarm Intelligence (2011)Google Scholar
  18. 18.
    Woosun, An., Ayala, D.F.M., Sidoti, D., Mishra, M., Xu, Han., Pattipati, K.R., Regnier, E.D., Kleinman, D.L., Hansen, J.A.: Dynamic asset allocation approaches for counter-piracy operations. In: Proceedings of the 15th International Conference on Information Fusion (FUSION), pp.1284-1291, 9-12 July 2012Google Scholar
  19. 19.
    Grasso, R., Braca, P., Osler, J., Hansen, J.: Asset network planning: integration of environmental data and sensor performance for counter piracy. EUSIPCO (2013)Google Scholar
  20. 20.
    Grasso, R., Braca, P., Osler, J., Hansen, J., Willet, P.: Optimal asset network planning for counter piracy operation support, part 1: under the hood. IEEE A & E Syst. Mag. (2013)Google Scholar
  21. 21.
    Grasso, R., Braca, P., Osler, J., Hansen, J., Willet, P.: Optimal asset network planning for counter piracy operation support, part 2: results. IEEE A & E Syst. Mag. (2013)Google Scholar
  22. 22.
    Paruchuri, P., Pearce, J.P., Tambe, M., Ordonez, F., Kraus, S.: Ancefficient heuristic approach for security against multiple adversaries. In: Proceedings of AAMAS, pp. 311-318. Honolulu, USA (2007)Google Scholar
  23. 23.
    Paruchuri, P., Tambe, M., Ordonez, F., Kraus, S.: Security in multiagentvsystems by policy randomization. In: Proceedings of AAMAS, pp. 273-280. Hakodate, Japan (2006)Google Scholar
  24. 24.
    Gatti, N.: Game theoretical insights in strategic patrolling: model and algorithm in normal-form. In: Proceedings of the ECAI (2008)Google Scholar
  25. 25.
    Agmon, N., Kraus, S., Kaminka, G.: Multi-robot perimeter patrol in adversarial settings. In: IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 2339-2345 (2008)Google Scholar
  26. 26.
    Agmon, N., Sadov, V., Kaminka, G., Kraus S.: The impact of adversarial knowledge on adversarial planning in perimeter patrol. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, International Foundation for Autonomous Agents and Multiagent Systems, vol. 1, pp. 55-62 (2008)Google Scholar
  27. 27.
    Basilico, N., Gatti, N., Rossi, T., Ceppi, S., Amigoni, F.: Extending algorithms for mobile robot patrolling in the presence of adversaries to more realistic settings. In: Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, vol. 02 (2009)Google Scholar
  28. 28.
    Basilico, N., Gatti, N., Villa, F.: Asynchronous Multi-Robot Patrolling Against Intrusions in Arbitrary Topologies (2010)Google Scholar
  29. 29.
    Vanek, O., Hrstka, O., Pechoucek, M.: Improving group transit schemes to minimize negative effects of maritime piracy. IEEE Intell. Trans. Syst. (2014)Google Scholar
  30. 30.
    Vanek, O., Pechoucek, M.: Dynamic group transit scheme for corridor transit. In: Proceedings of the 5th International Conference on Modeling, Simulation and Applied Optimization (2013)Google Scholar
  31. 31.
    Vanek, O., Jakob, M., Hrstka, O., Pechoucek, M.: Agent-based Model of Mariime Traffic in Piracy-affected Waters. Trans. Res. Part C: Emerg. Technol. (2013)Google Scholar
  32. 32.
    Shieh, E., An, B., Yang, R., Tambe, M., Baldwin, C., Di Renzo, J., Maule, B., Meyer, G.: PROTECT: an application of computational game theory for the security of the ports of the united states.In: Proceedings of the Conference on Artificial Intelligence (AAAI) Spotlight Track (2012)Google Scholar
  33. 33.
    Kiekintveld, C., Jain, M., Tsai, J., Pita, J., Tambe, M., Ordonez, F.: Computing Optimal Randomized Resource Allocations for Massive Security Games (2009)Google Scholar
  34. 34.
    Kiekintveld, C., et al.: Computing optimal randomized resource allocations for massive security games. In: Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 689-696 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Complex Systems and Security LabUniversità Campus Bio-Medico di RomaRomeItaly

Personalised recommendations