Skip to main content

Introduction: Self-Action Models

  • Chapter
  • First Online:
Book cover Self-Repair Networks

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 101))

  • 667 Accesses

Abstract

This chapter defines a general framework of self-action models, in which the self-repair network is considered. Motivations for the self-action models will be discussed by correspondence between information-intensive artificial systems (information systems involving connected computers) and biological systems. With increasing similarity between these two systems, emphasis is placed on a game theoretic approach for selfish agents and evolutionary mechanism for the autonomy and maintenance of information-intensive artificial systems. The background is also explained, introducing related paradigms of autonomic computing, recovery oriented computing and grid computing. Other related fields such as game theory (with evolutionary and spatial game theory), network sciences (with the graph theory and statistics), interacting particle systems (based on probabilistic process theory) and reliability theory are also briefly explained.

Some discussions of this chapter are presented in Ishida (2008, 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight Jr, T.F., Nagpal, R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Commun. ACM 43(5), 74–82 (2000)

    Article  Google Scholar 

  • Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)

    MATH  Google Scholar 

  • Axelrod, R.: The evolution of strategies in the iterated Prisoner’s dilemma. The dynamics of norms, pp. 199–220 (1987)

    Google Scholar 

  • Axelrod, R., Hamilton, W.D.: The evolution of cooperation. Science 211(4489), 1390–1396 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Babaoglu, O., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A., van Steen, M.: The self-star vision. In: Self-star Properties in Complex Information Systems, pp. 1–20. Springer, New York (2005)

    Google Scholar 

  • Barabási, A.-L., Frangos, J.: Linked: The New Science of Networks Science of Networks. Basic Books (2002)

    Google Scholar 

  • Barabási, A.-L., Freeh, V.W., Jeong, H.W., Brockman, J.B.: Parasitic computing. Nature 412(6850), 894–897 (2001). doi:10.1038/35091039

  • Barlow, R.E., Proschan, F.: Statistical theory of reliability and life testing: probability models. In: DTIC Document (1975)

    Google Scholar 

  • Brown, A.: Recovery-oriented computing: Building multitier dependability (2004)

    Google Scholar 

  • Brown, A., Patterson, D.A.: Embracing failure: a case for recovery-oriented computing (ROC). In: High Performance Transaction Processing Symposium 2001, pp. 3–8

    Google Scholar 

  • Clement, L., Nagpal, R.: Self-assembly and self-repairing topologies. In: Workshop on Adaptability in Multi-Agent Systems, RoboCup Australian Open 2003

    Google Scholar 

  • Colquhoun, H.M.: Self-repairing polymers: materials that heal themselves. Nat. Chem. 4(6), 435–436 (2012)

    Article  Google Scholar 

  • Dawkins, R.: The Selfish Gene, 1976, Revised edition. Oxford University Press, Oxford (1989)

    Google Scholar 

  • de Garis, H.: Evolvable hardware genetic programming of a Darwin machine. In: Artificial Neural Nets and Genetic Algorithms, pp. 441–449. Springer, New York (1993)

    Google Scholar 

  • De Pinninck, A.P., Sierra, C., Schorlemmer, M.: A multiagent network for peer norm enforcement. Auton. Agent. Multi-Agent Syst. 21(3), 397–424 (2010)

    Article  Google Scholar 

  • Dezso, Z., Barabási, A.L.: Halting viruses in scale-free networks. Phys Rev E 65(5) (2002). doi:10.1103/Physreve.65.055103

  • Domany, E., Kinzel, W.: Equivalence of cellular automata to Ising models and directed percolation. Phys. Rev. Lett. 53(4), 311–314 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Durrett, R.: Lecture Notes on Particle Systems and Percolation. Wadsworth & Brooks/Cole Advanced Books & Software (1988)

    Google Scholar 

  • Farley, A.M., Proskurowski, A.: Self-repairing networks. Parallel Process. Lett. 3(04), 381–391 (1993)

    Article  MathSciNet  Google Scholar 

  • Farley, A.M., Proskurowski, A.: Minimum self-repairing graphs. Graphs Comb. Asian J. 13(4), 345–352 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Forbes, R., Rutherford, D., Stieglitz, C., Tung, L.: A self-diagnosable computer. In: Proceedings of the Fall Joint Computer Conference, 30 Nov–1 Dec 1965, Part I, pp. 1073–1086. ACM

    Google Scholar 

  • Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  • Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree compared. In: Grid Computing Environments Workshop, 2008. GCE’08, pp. 1–10. IEEE Grid Computing

    Google Scholar 

  • Gacs, P.: Reliable cellular automata with self-organization. J. Stat. Phys. 103(1–2), 45–267 (2001). doi:10.1023/A:1004823720305

    Article  MathSciNet  MATH  Google Scholar 

  • Gray, L.F.: A reader’s guide to Gacs’s “Positive Rates” paper. J. Stat. Phys. 103(1–2), 1–44 (2001). doi:10.1023/A:1004824203467

    Article  MATH  Google Scholar 

  • Grimmett, G.: Percolation. Springer, New York (1989)

    MATH  Google Scholar 

  • Hoffmann, H., Maggio, M., Santambrogio, M.D., Leva, A., Agarwal, A.: SEEC: A Framework for Self-aware Computing (2010)

    Google Scholar 

  • Horn, P.: Autonomic Computing: IBM’s Perspective on the State of Information Technology (2001)

    Google Scholar 

  • Huang, R.-F., Chen, C.-H., Wu, C.-W.: Economic aspects of memory built-in self-repair. IEEE Des. Test 24(2), 164–172 (2007)

    Article  Google Scholar 

  • Ishida, Y.: A critical phenomenon in a self-repair network by mutual copying. In: Knowledge-Based Intelligent Information and Engineering Systems, pp. 86–92. Springer, New York (2005)

    Google Scholar 

  • Ishida, Y.: Complex systems paradigms for integrating intelligent systems: a game theoretic approach. In: Computational Intelligence: A Compendium, pp. 155–181. Springer, New York (2008)

    Google Scholar 

  • Ishida, Y.: Immunity-Based Systems: A Design Perspective. Springer, New York (2004)

    Google Scholar 

  • Ishida, Y.: Information Networks as Complex Systems: A Self-Repair and Regulation Model (2007)

    Google Scholar 

  • Iwasa, Y.: Optimal effort distribution of foraging animals. In: International Symposium on Mathematical Topics in Biology, Kyoto, Japan, 11–12 Sept 1987, pp. 49–58

    Google Scholar 

  • Kampis, G.: Self-Modifying Systems in Biology and Cognitive Science. Pergamon Press, Oxford (1991)

    Google Scholar 

  • Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)

    Article  MathSciNet  Google Scholar 

  • Klavins, E.: Programmable self-assembly. IEEE Control Syst. 27(4), 43–56 (2007)

    Article  Google Scholar 

  • Konno, N.: Phase Transitions of Interacting Particle Systems. World Scientific, Singapore (1994)

    Google Scholar 

  • Kuhn, F., Schmid, S., Wattenhofer, R.: A self-repairing peer-to-peer system resilient to dynamic adversarial churn. In: Peer-to-Peer Systems IV, pp. 13–23. Springer, New York (2005)

    Google Scholar 

  • Laprie, J.-C.: Dependable computing and fault-tolerance. Digest of Papers FTCS-15, pp. 2–11 (1985)

    Google Scholar 

  • Laprie, J.-C.: Dependable computing: concepts, limits, challenges. In: FTCS-25, the 25th IEEE International Symposium on Fault-Tolerant Computing-Special Issue 1995, pp. 42–54

    Google Scholar 

  • Liggett, T.M.: Stochastic Interacting Systems: Voter, Contact and Exclusion Processes. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  • Liggett, T.M.: Interacting Particle Systems (1985)

    Google Scholar 

  • Majumder, U., Sahu, S., LaBean, T.H., Reif, J.H.: Design and simulation of self-repairing DNA lattices. In: DNA Computing. pp. 195–214. Springer, New York (2006)

    Google Scholar 

  • Mange, D., Sipper, M., Stauffer, A., Tempesti, G.: Toward self-repairing and self-replicating hardware: the embryonics approach. In: The Second NASA/DoD Workshop on 2000 Evolvable Hardware, 2000. Proceedings, pp. 205–214. IEEE

    Google Scholar 

  • Mange, D., Madon, D., Stauffer, A., Tempesti, G.: Von Neumann revisited: a turing machine with self-repair and self-reproduction properties. Robot. Auton. Syst. 22(1), 35–58 (1997)

    Article  Google Scholar 

  • Masuda, N., Konno, N.: Multi-state epidemic processes on complex networks. J. Theor. Biol. 243(1), 64–75 (2006)

    Article  MathSciNet  Google Scholar 

  • May, R.M., Lloyd, A.L.: Infection dynamics on scale-free networks. Phys. Rev. E 64(6), 066112 (2001)

    Article  Google Scholar 

  • Maynard Smith, J.: Evolution and the Theory of Games. Cambridge University Press, Cambridge, New York (1982)

    Google Scholar 

  • Mayr, E.: This is Biology: The Science of the Living World. Universities Press, Hyderabad (1997)

    Google Scholar 

  • Mayr, E.: What Makes Biology Unique?: Considerations on the Autonomy of a Scientific Siscipline. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  • Mottola, L., Cugola, G., Picco, G.P.: A self-repairing tree topology enabling content-based routing in mobile ad hoc networks. IEEE Trans. Mobile Comput. 7(8), 946–960 (2008)

    Article  Google Scholar 

  • Murata, S., Yoshida, E., Kurokawa, H., Tomita, K., Kokaji, S.: Self-repairing mechanical systems. Auton. Robots 10(1), 7–21 (2001)

    Article  MATH  Google Scholar 

  • Murch, R.: Autonomic Computing. IBM Press, New Jersey (2004)

    Google Scholar 

  • Nagpal, R.: Programmable self-assembly using biologically-inspired multiagent control. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: Part 1, 2002, pp. 418–425. ACM

    Google Scholar 

  • Nash, J.F.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. 36(1), 48–49 (1950a)

    Google Scholar 

  • Nash, J.F.: The bargaining problem. Econom.: J. Econom. Soc. 155–162 (1950b)

    Google Scholar 

  • Nelson, V.P.: Fault-tolerant computing: fundamental concepts. Computer 23(7), 19–25 (1990)

    Article  Google Scholar 

  • Niu, W., O’Sullivan, C., Rambo, B.M., Smith, M.D., Lavigne, J.J.: Self-repairing polymers: poly(dioxaborolane)s containing trigonal planar boron. Chem. Commun. 34, 4342–4344 (2005)

    Article  Google Scholar 

  • Nowak, M.A.: Evolutionary Dynamics: Exploring the Equations of Life. Harvard University Press, Cambridge (2006)

    Google Scholar 

  • Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359(6398), 826–829 (1992)

    Article  Google Scholar 

  • Pastor-Satorras, R., Vespignani, A.: Evolution and Structure of the Internet: A Statistical Physics Approach. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  • Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200–3203 (2001)

    Article  Google Scholar 

  • Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 65(3), 036104 (2002)

    Article  Google Scholar 

  • Patterson, D., Brown, A., Fox, A.: Recovery Oriented Computing. Berkeley, CA (2005)

    Google Scholar 

  • Pradhan, D.: Fault-tolerant computing. Computer 13(3), 6–7 (1980)

    Article  MathSciNet  Google Scholar 

  • Preparata, F.P., Metze, G., Chien, R.T.: On the connection assignment problem of diagnosable systems. IEEE Trans. Electron. Comput. 6, 848–854 (1967)

    Google Scholar 

  • Ramamoorthy, C.: A structural theory of machine diagnosis. In: Proceedings of the Spring Joint Computer Conference, 18–20 Apr 1967, pp. 743–756. ACM

    Google Scholar 

  • Schmets, A.J., van der Zaken, G., Zwaag, S.: Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science, vol. 100. Springer, New York (2007)

    Google Scholar 

  • Shchukin, D.G., Möhwald, H.: Self-repairing coatings containing active nanoreservoirs. Small 3(6), 926–943 (2007)

    Article  Google Scholar 

  • Shooman, M.L.: Probabilistic Reliability: An Engineering Approach, vol. 968. McGraw-Hill, New York (1968)

    Google Scholar 

  • Smith, J.M., Parker, G.A.: The logic of asymmetric contests. Anim. Behav. 24(1), 159–175 (1976)

    Article  Google Scholar 

  • Stauffer, D., Aharony, A.: Introduction to Percolation Theory. Taylor and Francis, London (1994)

    Google Scholar 

  • Stauffer, A., Mange, D., Tempesti, G.: Bio-inspired computing machines with self-repair mechanisms. In: Biologically Inspired Approaches to Advanced Information Technology, pp. 128–140. Springer, New York (2006)

    Google Scholar 

  • Stoy, K., Nagpal, R.: Self-repair through scale independent self-reconfiguration. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004 (IROS 2004). Proceedings, pp. 2062–2067. IEEE

    Google Scholar 

  • Sudbury, A.: A method for finding bounds on critical values for non-attractive interacting particle systems. J. Phys. A: Math. Gen. 31(41), 8323 (1998)

    Article  MATH  Google Scholar 

  • Takeda, K., Tanahashi, M., Unno, H.: Self-repairing mechanism of plastics. Sci. Technol. Adv. Mater. 4(5), 435–444 (2003)

    Article  Google Scholar 

  • von Neumann, J., Morgenstern, O.: Game Theory and Economic Behavior. Princeton University Press, Princeton (1944)

    MATH  Google Scholar 

  • von Neumann, J., Burks, A.W.: Theory of Self-reproducing Automata (1966)

    Google Scholar 

  • Watts, D.J.: Six Degrees: The Science of a Connected Age. WW Norton & Company, New York (2004)

    Google Scholar 

  • Watts, D.J.: Small Worlds: The Dynamics of Networks Between Order and Randomness. Princeton University Press, Princeton (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiteru Ishida .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ishida, Y. (2015). Introduction: Self-Action Models. In: Self-Repair Networks. Intelligent Systems Reference Library, vol 101. Springer, Cham. https://doi.org/10.1007/978-3-319-26447-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26447-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26445-5

  • Online ISBN: 978-3-319-26447-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics