Skip to main content

Simulation Studies of Plasma Transport at Earth, Jupiter and Saturn

  • Chapter
  • First Online:
Magnetic Reconnection

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 427))

Abstract

In this chapter we present a review of plasma transport in the magnetospheres of the rapidly rotating outer planets Jupiter and Saturn with emphasis on the effects of magnetic reconnection. Unlike the Earth’s magnetosphere where reconnection is the dominant transport mechanism, atmospherically driven corotation dominates at Jupiter and Saturn. However, there is both observational and theoretical basis for reconnection at the outer planets. Since observations at the outer planets are sparse we have used numerical simulations to give an overall view of transport. For northward IMF, reconnection can erode the dayside Jovian magnetopause position by as much as 10 % while the simulations at Saturn indicate very little erosion. In the magnetotail, reconnection at Jupiter can become quasi-periodic in both Jupiter and Saturn simulations. There is observational evidence for this at Jupiter but the observational evidence is not as clear at Saturn. Solar wind dynamic pressure controls whether or not periodic reconnection occurs at Saturn while both dynamic pressure and the IMF are important at Jupiter. Both outflow-driven reconnection in which flux tubes reconnect as they convect from the dayside to the tail and solar-wind-driven reconnection are found in the simulations. One simulation study indicates that a pulse of increased dynamic pressure can trigger reconnection at Saturn. Large scale plasmoids do not remove enough plasma from the magnetospheres of either outer planet to account for loss of plasma from the inner magnetosphere sources. There is evidence in the Saturn simulations of Kelvin–Helmholtz waves driving transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • V. Angelopoulos, W. Baumjohann, C.F. Kennel, F.V. Coroniti, M.G. Kivelson, R. Pellat et al., Bursty bulk flows in the inner central plasma sheet. J. Geophys. Res. 97, 4027 (1992). doi:10.1029/91JA02701

    Article  ADS  Google Scholar 

  • M. Ashour-Abdalla, M. El-Alaoui, M.L. Goldstein, M. Zhou, D. Schriver, R. Richard et al., Observations and simulations of non-local acceleration of electrons in magnetotail magnetic reconnection events. Nat. Phys. 7, 360 (2011). doi:10.1038/nphys1903

    Article  Google Scholar 

  • W.I. Axford, Viscous interaction between the solar wind and the Earth’s magnetosphere. Planet. Space Sci. 12, 45 (1961)

    Article  ADS  Google Scholar 

  • W.I. Axford, C.O. Hines, A unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Can. J. Phys. 39, 1433–1464 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  • F. Bagenal, The magnetosphere of Jupiter: coupling the equator to the poles. J. Atmos. Sol. Terr. Phys. 69, 387 (2007). doi:10.1016/j.jastp.2006.08.012

    Article  ADS  Google Scholar 

  • F. Bagenal, Comparative planetary environments, in Heliophysics: Plasma Physics of the Local Cosmos, ed. by C.J. Schrijver, G.L. Siscoe (Cambridge University Press, Cambridge, 2009), p. 360

    Chapter  Google Scholar 

  • E.J. Bunce, S.W.H. Cowley, D.M. Wright, A.J. Coates, M.K. Dougherty, N. Krupp, W.S. Kurth, A.M. Rymer, In situ observations of a solar wind compression-induced hot plasma injection in Saturn’s tail. Geophys. Res. Lett. 32, L20S04 (2005). doi:10.1029/2005GL022888

    Article  Google Scholar 

  • S.G. Claudepierre, S.R. Elkington, M. Wiltberger, Solar wind driving of magnetospheric ULF waves: pulsations driven by velocity shear at the magnetopause. J. Geophys. Res. 113, A05218 (2008). doi:10.1029/2007JA012890

    ADS  Google Scholar 

  • S.W.H. Cowley, E.J. Bunce, T.S. Stallard, S. Miller, Jupiter’s polar ionospheric flows: theoretical interpretation. Geophys. Res. Lett. 30(5), 1220 (2003). doi:10.1029/2002GL016030

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, S.V. Badman, S.M. Imber, S.E. Milan, Comment on “Jupiter: a fundamentally different magnetospheric interaction with the solar wind” by D.J. McComas and F. Bagenal. Geophys. Res. Lett. 35, L10101 (2008). doi:10.1029/2007GL032645

    Article  ADS  Google Scholar 

  • J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47 (1961). doi:10.1103/PhysRevLett.6.47

    Article  ADS  Google Scholar 

  • J.W. Dungey, Electrodynamics of the outer magnetosphere, paper presented at Ionosphere Conference. Paper presented at the Phys. Soc. of London, Cambridge, 1955

    Google Scholar 

  • K. Fukazawa, T. Ogino, R.J. Walker, Dynamics of the Jovian magnetosphere for northward interplanetary magnetic field (IMF). Geophys. Res. Lett. 32, L03202 (2005). doi:10.1029/2004GL021392

    Article  ADS  Google Scholar 

  • K. Fukazawa, K.T. Ogino, R.J. Walker, Configuration and dynamics of the Jovian magnetosphere. J. Geophys. Res. 111, A10207 (2006). doi:10.1029/2006JA011874

    Article  ADS  Google Scholar 

  • K. Fukazawa, S. Ogi, T. Ogino, R.J. Walker, Magnetospheric convection at Saturn as a function of IMF BZ. Geophys. Res. Lett. 34, L01105 (2007a). doi:10.1029/2006GL028373

    Article  ADS  Google Scholar 

  • K. Fukazawa, T. Ogino, R.J. Walker, Vortex-associated reconnection for northward IMF in the Kronian magnetosphere. Geophys. Res. Lett. 34, L23201 (2007b). doi:10.1029/2007GL031784

    Article  ADS  Google Scholar 

  • K. Fukazawa, T. Ogino, R.J. Walker, A simulation study of dynamics in the distant Jovian magnetotail. J. Geophys. Res. 116, A09219 (2010). doi:10.1029/2009JA01522

    ADS  Google Scholar 

  • K. Fukazawa, T. Ogino, R.J. Walker, A magnetohydrodynamic simulation of Kronian field-aligned currents and auroras. J. Geophys. Res. 117, A002214 (2012). doi:10.1029/2011JA016945

    ADS  Google Scholar 

  • K. Fukazawa, R. J. Walker, S. Eriksson, Massively parallel MHD simulation of Kronian magnetosphere convection and auroral emission with solar wind. Paper presented at the fall AGU meeting, San Francisco, 7–12 Dec 2014

    Google Scholar 

  • T.I. Gombosi et al., Solution-adaptive magnetohydrodynamics for space plasmas: Sun-to-Earth simulations. Comput. Sci. Eng. 6(2), 14 (2004). doi:10.1109/MCISE.2004.1267603

    Article  Google Scholar 

  • A. Grocott, S.V. Badman, S.W.H. Cowley, S.E. Milan, J.D. Nichols, T.K. Yeoman, Magnetosonic Mach number dependence of the efficiency of reconnection between planetary and interplanetary magnetic fields. J. Geophys. Res. 114, A07219 (2009). doi:10.1029/2009JA01433

    ADS  Google Scholar 

  • D. Grodent, J. Gustin, J.-C. Gérard, A. Radioti, B. Bonfond, W.R. Pryor, Small-scale structures in Saturn’s ultraviolet aurora. J. Geophys. Res. 116, A09225 (2011). doi:10.1029/2011JA016818

    ADS  Google Scholar 

  • K.C. Hansen, A.J. Ridley, G.B. Hospodarsky, N. Achilleos, M.K. Dougherty, T.I. Gombosi, G. Tóth, Global MHD simulations of Saturn’s magnetosphere at the time of Cassini approach. Geophys. Res. Lett. 32, L20S06 (2005). doi:10.1029/2005GL022835

    Article  Google Scholar 

  • T.W. Hill, Inertial limit on corotation. J. Geophys. Res. 84, 6554–6558 (1979). doi:10.1029/JA084iA11p06554

    Article  ADS  Google Scholar 

  • E.W. Hones Jr., The magnetotail: its generation and dissipation, in Physics of Solar Planetary Environments, ed. by D.J. Williams (AGU, Washington, 1976), p. 559

    Google Scholar 

  • C.M. Jackman, C.S. Arridge, Statistical properties of the magnetic field in the Kronian magnetotail lobes and current sheet. J. Geophys. Res. 116, A05224 (2011). doi:10.1029/2010JA01597

    ADS  Google Scholar 

  • C.M. Jackman, J.A. Slavin, S.W.H. Cowley, Cassini observations of plasmoid structure and dynamics: implications for the role of magnetic reconnection in magnetospheric circulation at Saturn. J. Geophys. Res. 116, A10212 (2011). doi:10.1029/2011JA016682

    Article  ADS  Google Scholar 

  • C.M. Jackman, N. Achilleos, S.W.H. Cowley, E.J. Bunce, A. Radioti, D. Grodent, S.V. Badman, M.K. Dougherty, W. Pryor, Auroral counterpart of magnetic field dipolarizations in Saturn’s tail. Planet. Space Sci. 82–83, 34–42 (2013). doi:10.1016/j.pss.2013.03.01

    Article  Google Scholar 

  • C.M. Jackman, C.S. Arridge, N. André, F. Bagenal, J. Birn, M.P. Freeman et al., Large-scale structure and dynamics of the magnetotails of Mercury, Earth, Jupiter and Saturn. Space Sci. Rev. 182, 85–154 (2014). doi:10.1007/s112140-014-0060-8

    Article  ADS  Google Scholar 

  • X. Jia, K.C. Hansen, T.I. Gombosi, M.G. Kivelson, G. Tóth, D.L. DeZeeuw, A.J. Ridley, Magnetospheric configuration and dynamics of Saturn’s magnetosphere: a global MHD simulation. J. Geophys. Res. 117, A05225 (2012). doi:10.1029/2012JA017575

    ADS  Google Scholar 

  • S.P. Joy, M.G. Kivelson, R.J. Walker, K.K. Khurana, C.T. Russell, T. Ogino, Probalistic models of the Jovian magnetopause and bow shock locations. J. Geophys. Res. 107, 1309 (2002). doi:10.1029/200IJA009146

    Article  Google Scholar 

  • S.J. Kanani, C.S. Arridge, G.H. Jones, A.N. Fazakerley, H.J. McAndrews, N. Sergis et al., A new form of Saturn’s magnetopause using a dynamic pressure balance model, based on in-situ, multi-instrument Cassini measurements. J. Geophys. Res. 115, A06207 (2010). doi:10.1029/2009JA014262

    ADS  Google Scholar 

  • S. Kasahara, E.A. Kronberg, N. Krupp, T. Kimera, C. Tao, S.V. Badman, H. Retino, M. Fijimoto, Magnetic reconnection in the Jovian tail: X-line evolution and consequent plasma sheet structures. J. Geophys. Res. 116, A11219 (2011). doi:10.1029/2011JA016892

    Google Scholar 

  • S. Kasahara, E.A. Kronberg, T. Kimura, C. Tao, S.V. Badman, A. Masters, A. Retinò, N. Krupp, M. Fujimoto, Asymmetric distribution of reconnection jet fronts in the Jovian nightside magnetosphere. J. Geophys. Res. 118, 375 (2013). doi:10.1029/2012JA018130

    Article  Google Scholar 

  • A. Kidder, C.S. Paty, R.M. Winglee, E.M. Harnett, External triggering of plasmoid development at Saturn. J. Geophys. Res. 117, A07206 (2012). doi:10.1029/2012JA017625

    ADS  Google Scholar 

  • M.G. Kivelson, Planetary magnetospheres, in Solar Terrestrial Environment, ed. by Y. Kamide, C.-L. Chian (Springer, New York, 2007), p. 470

    Google Scholar 

  • M.G. Kivelson, Z.‐.Y. Pu, The Kelvin‐Helmholtz instability on the magnetopause. Planet. Space Sci. 32, 1341 (1984). doi:10.1016/0032-0633(84)90077-

    Article  ADS  Google Scholar 

  • M.G. Kivelson, D.J. Southwood, First evidence of IMF control of Jovian magnetospheric boundary locations: Cassini and Galileo magnetic field measurements compared. Planet. Space Sci. 51, 891–898 (2003). doi:10.1016/S0032-0633(03)0075-8

    Article  ADS  Google Scholar 

  • E.A. Kronberg, K.-H. Glassmeier, J. Woch, N. Krupp, A. Lagg, M.K. Dougherty, A possible intrinsic mechanism for the quasi-periodic dynamics of the Jovian magnetosphere. J. Geophys. Res. 112, A05203 (2007). doi:10.1029/2006JA011994

    ADS  Google Scholar 

  • E.A. Kronberg, J. Woch, N. Krupp, A. Lagg, A summary of observational records on periodicities above the rotational period in the Jovian magnetosphere. Ann. Geophys. 27, 2565 (2009). doi:10.5194/angeo-27-2565-2009

    Article  ADS  Google Scholar 

  • E.A. Kronberg, S. Kasahara, N. Krupp, J. Woch, Field-aligned beams and reconnection in the Jovian magnetotail. Icarus 217, 55–65 (2012)

    Article  ADS  Google Scholar 

  • N. Krupp, J. Woch, A. Lagg, B. Wilken, S. Livi, D.J. Williams, Energetic particle bursts in the predawn Jovian magnetotail. Geophys. Res. Lett. 25(8), 1249 (1998). doi:10.1029/98GL00863

    Article  ADS  Google Scholar 

  • H.R. Lai, H.Y. Wei, C.T. Russell, C.S. Arridge, M.K. Dougherty, Reconnection at the magnetopause of Saturn: perspective from FTE occurrence and magnetosphere size. J. Geophys. Res. 117, A05222 (2012). doi:10.1029/2011JA017263

    ADS  Google Scholar 

  • A. Masters, N. Achilleos, C. Bertucci, M.K. Dougherty, S.J. Kanani, C.S. Arridge et al., Surface waves on Saturn’s dawn flank magnetopause driven by the Kelvin‐Helmholtz instability. Planet. Space Sci. 57, 1769 (2009). doi:10.1016/j.pss.2009.02.010

    Article  ADS  Google Scholar 

  • A. Masters, D.G. Mitchell, A.J. Coates, M.K. Dougherty, Saturn’s low-latitude boundary layer: 1. Properties and variability. J. Geophys. Res. 116, A06210 (2011a). doi:10.1029/2010JA016421

    ADS  Google Scholar 

  • A. Masters, M.F. Thomsen, S.V. Badman, C.S. Arridge, D.T. Young, A.J. Coates, M.K. Dougherty, Supercorotating return flow from reconnection in Saturn’s magnetotail. Geophys. Res. Lett. 38, L03103 (2011b). doi:10.1029/2010GL046149

    Article  ADS  Google Scholar 

  • H.J. McAndrews, M.F. Thomsen, C.S. Arridge, C.M. Jackman, R.J. Wilson, M.G. Henderson, R.L. Tokar, K.K. Khurana, E.C. Sittler, A.J. Coates, M.K. Dougherty, Plasma in Saturn’s nightside magnetosphere and the implications for global circulation. Planet. Space Sci. 57(14–15), 1714–1722 (2009). doi:10.1016/j.pss.2009.03.003

    Article  ADS  Google Scholar 

  • D.J. McComas, F. Bagenal, Jupiter: a fundamentally different magnetospheric interaction with the solar wind. Geophys. Res. Lett. 34, L20106 (2007). doi:10.1029/2007GL031078

    Article  ADS  Google Scholar 

  • D.G. Mitchell, S.M. Krimigis, C. Paranicas, P.C. Brandt, J.F. Carbary, E.C. Roelof, W.S. Kurth, D.A. Gurnett, J.T. Clarke, J.D. Nichols, J. Gerard, D.C. Grodent, M.K. Dougherty, W.R. Pryor, Recurrent energization of plasma in the midnight to-dawn quadrant of Saturn’s magnetosphere and it relationship to auroral UV and radio emissions. Planet. Space Sci. 57, 1732–1742 (2009). doi:10.1016/j.pss.2009.04.002

    Article  ADS  Google Scholar 

  • J.D. Nichols, S.W.H. Cowley, D.J. McComas, Magnetopause reconnection rate estimates for Jupiter’s magnetosphere based on interplanetary measurements at ∼5 AU. Ann. Geophys. 24, 393–406 (2006). doi:10.5194/angeo-24-393-2006

    Article  ADS  Google Scholar 

  • T. Ogino, R.J. Walker, M. Ashour-Abdalla, A global magnetohydrodynamic simulation of the magnetosheath and magnetosphere when the interplanetary magnetic field is northward. IEEE Trans. Plasma Sci. 20, 817 (1992). doi:10.1109/27.19953

    Article  ADS  Google Scholar 

  • T. Ogino, R.J. Walker, M.G. Kivelson, A global magnetohydrodynamic simulation of the Jovian magnetosphere. J. Geophys. Res. 103, 225 (1998). doi:10.1029/97JA02247

    Article  ADS  Google Scholar 

  • K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi, D.L.D. Zeeuw, A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154, 284 (1999). doi:10.1006/jcph.1999.6299

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • C.T. Russell, R.C. Elphic, Initial ISEE magnetometer results - magnetopause observations. Space Sci. Rev. 22, 681 (1978). doi:10.1007/BF0021619

    Article  ADS  Google Scholar 

  • C.T. Russell, K.K. Khurana, D.E. Huddleston, M.G. Kivelson, Localized reconnection in the near Jovian magnetotail. Science 280, 1061–1064 (1998). doi:10.1126/science.280.5366.1961

    Article  ADS  Google Scholar 

  • C.T. Russell, C.M. Jackman, H.Y. Wei, C. Bertucci, M.K. Dougherty, Titan’s influence on Saturnian substorm occurrence. Geophys. Res. Lett. 35, L12105 (2008). doi:10.1029/2008GL034080

    ADS  Google Scholar 

  • L. Scurry, C.T. Russell, Proxy studies of energy transfer to the magnetosphere. J. Geophys. Res. 96, 9541 (1991). doi:10.1029/91JA00569

    Article  ADS  Google Scholar 

  • S. Sharma, R. Nakamura, A. Runov, E.E. Grigorenko, H. Hasegawa, M. Hoshino et al., Transient and localized processes in the magnetotail: a review. Ann. Geophys. 26, 955 (2008). doi:10.5194/angeo-26-955-2008

    Article  ADS  Google Scholar 

  • S. Simon, A. Wennmacher, F.M. Neubauer, C.L. Bertucci, H. Kriegel, J. Saur, C.T. Russell, M.K. Dougherty, Titan’s highly dynamic magnetic environment: a systematic survey of Cassini magnetometer observations from flybys TA-T62. Planet. Space Sci. 58, 1230–1251 (2010). doi:10.1016/j.pss.2010.04.021

    Article  ADS  Google Scholar 

  • J.A. Slavin, B.T. Tsurutani, E.J. Smith, D.E. Jones, D.G. Sibeck, Average configuration of the distant (<220 Re) magnetotail: initial ISEE-3 magnetic field results. Geophys. Res. Lett. 10, 973–976 (1983). doi:10.1029/GL010i010p00973

    Article  ADS  Google Scholar 

  • M.F. Thomsen, R.J. Wilson, R.L. Tokar, D.B. Reisenfeld, C.M. Jackman, Cassini/CAPS observations of duskside tail dynamics at Saturn. J. Geophys. Res. 118, 5767–5781 (2013). doi:10.1002/jgra.50552

    Article  Google Scholar 

  • M.F. Thomsen, D. Mitchell, X. Jia, C.M. Jackman, G. Hospodarsky, A. Coates, Plasmapause formation at Saturn. J. Geophys. Res. 120, 2571–2583 (2015). doi:10.1002/2015JA021008

    Article  Google Scholar 

  • V.M. Vasyliunas, Plasma distribution and flow, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler (Cambridge Univ. Press, Cambridge, 1983), pp. 395–453

    Chapter  Google Scholar 

  • M.F. Vogt, M.G. Kivelson, K.K. Khurana, S.P. Joy, R.J. Walker, Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. J. Geophys. Res. 115, A06219 (2010). doi:10.1029/2009JA015098

    ADS  Google Scholar 

  • M.F. Vogt, M.G. Kivelson, K.K. Khurana, R.J. Walker, B. Bonfond, D. Grodent, A. Radioti, Improved mapping of Jupiter’s auroral features to magnetospheric sources. J. Geophys. Res. 116, A03220 (2011). doi:10.1029/2010JA016148

    ADS  Google Scholar 

  • M.F. Vogt, C.M. Jackman, J.A. Slavin, E.J. Bunce, S.W.H. Cowley, M.G. Kivelson, K.K. Khurana, Structure and statistical properties of plasmoids in Jupiter’s magnetotail. J. Geophys. Res. 119, 821–843 (2014). doi:10.1002/2013JA019393

    Article  Google Scholar 

  • M. Volwerk, J. Berchem, Y.V. Bogdanova, O.D. Constantinescu, M.W. Dunlop, J.P. Eastwood et al., Interplanetaruy magnetic field rotations followed from L1 to the ground: the response of the Earth’s magnetosphere as seen by multi-spacecraft events and ground-based observations. Ann. Geophys. 29, 1549–1569 (2011). doi:10.5194/angeo-29-1549-2011

    Article  ADS  Google Scholar 

  • A.D.M. Walker, The Kelvin‐Helmholtz instability in the low-latitude boundary layer. Planet. Space Sci. 29, 1119 (1981). doi:10.1016/0032-0633(81)90011-8

    Article  ADS  Google Scholar 

  • R.J. Walker, C.T. Russell, Flux transfer events at the Jovian magnetopause. J. Geophys. Res. 90(A8), 7397 (1985). doi:10.1029/JA090iA08p07397

    Article  ADS  Google Scholar 

  • R.J. Walker, T. Terasawa, S.P. Christon, V. Angelopoulos, M. Hoshino, W. Lennartsson et al., Source and loss processes in the magnetotail. Space Sci. Rev. 88, 285 (1999). doi:10.1023/A:100520791863

    Article  ADS  Google Scholar 

  • R.J. Walker, T. Ogino, M.G. Kivelson, Magnetohydrodynamic simulation of the effect of the solar wind on the Jovian magnetosphere. Planet. Space. Sci. 49, 237 (2001)

    Article  ADS  Google Scholar 

  • R.J. Walker, K. Fukazawa, T. Ogino, D. Morozoff, A simulation study of Kelvin-Helmholtz waves at Saturn’s magnetopause. J. Geophys. Res. 116, A03203 (2011). doi:10.1029/2010JA015905

    ADS  Google Scholar 

  • R.J. Walker, K. Fukazawa, Simulation studies of plasma transport in outer planet magnetospheres, paper presented at the 12th International School of Space Simulations, Prague, July 2015

    Google Scholar 

  • R.M. Winglee, Ion cyclotron and heavy ion effects on reconnection in a global magnetotail. J. Geophys. Res. 109, A09206 (2004). doi:10.1029/2004JA010385

    ADS  Google Scholar 

  • J. Woch, J.N. Krupp, A. Lagg, B. Wilken, S. Livi, D.J. Williams, Quasiperiodic modulations of the Jovian magnetotail. Geophys. Res. Lett. 25, 1253–1256 (1998). doi:10.1029/98GL00861

    Article  ADS  Google Scholar 

  • J. Woch, N. Krupp, A. Lagg, Particle bursts in the Jovian magnetosphere: evidence for a near-Jupiter neutral line. Geophys. Res. Lett. 29(7), 1138 (2002). doi:10.1029/2001GL014080

    Article  ADS  Google Scholar 

  • B. Zieger, K.C. Hansen, T.I. Gombosi, D.L. DeZeeuw, Periodic plasma escape from the mass-loaded Kronian magnetosphere. J. Geophys. Res. 115, A08208 (2010). doi:10.1029/2009JA014951

    ADS  Google Scholar 

Download references

Acknowledgments

RJW served as the NSF Program Director for Magnetospheric Physics during the period when much of this work was carried out. He gratefully acknowledges the NSF Individual Research and Development program. He also acknowledges NASA grant NASA NNG05GB82G under which this work was completed. The work of XJ is supported by the NASA Cassini Data Analysis Program through grant NNX12AK34G, and by the NASA Cassini mission under contract 1409449 with JPL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Walker, R.J., Jia, X. (2016). Simulation Studies of Plasma Transport at Earth, Jupiter and Saturn. In: Gonzalez, W., Parker, E. (eds) Magnetic Reconnection. Astrophysics and Space Science Library, vol 427. Springer, Cham. https://doi.org/10.1007/978-3-319-26432-5_9

Download citation

Publish with us

Policies and ethics