Skip to main content

Mathematical Model I: Static Intentional Risk

  • Chapter
  • First Online:
Intentional Risk Management through Complex Networks Analysis

Part of the book series: SpringerBriefs in Optimization ((BRIEFSOPTI))

  • 759 Accesses

Abstract

As we have presented in Chap. 1, two different types of risk related to Intentional Risk are identified: The Static Risk and the Dynamic Risk. Roughly speaking, we can summarize their differences as follows:

  • Static Risk: It is opportunistic risk. Its main feature is that this risk follows authorized paths. A clear example of this type of risk is when employees or contractors take data they have authorized access to and use it for personal gain.

  • Dynamic Risk: It is the type of directed intentional risk. It can be identified because of its tendency to follow unauthorized paths. The paradigm for this system is represented by the use of a vulnerability in the system to gain technical or administrative accesses. In other words, Dynamic Risk is directly linked to the use of potentially existing paths (but not authorized) in the network. An example of dynamic risk would be an intrusion to a network by external hackers.

The difference between the two types of risk is SUBSTANTIAL since in the dynamic risk the attacker is ready to MANIPULATE and MODIFY the system and the paths to ACCESS the intended content/part. On the other hand, the static risk is opportunistic and it only uses the authorized paths. The model introduced in this chapter joins together all the research on intentional attack risk modelled from complex networks concepts and it is based on the information accessibility of each element, on its value and on the anonymity level of the attacker. The proposed model of Static Intentional Risk uses an adapted complex network that allows modeling the risk in complex digital environments such as big corporate networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, J., Blockley, D.I. and Woodman, N.J.: Vulnerability of systems. Civil Eng. and Env. Syst. 18, 14165 (2001)

    Google Scholar 

  2. Agarwal, J., Blockley, D.I. and Woodman, N.J.: Vulnerability of structural systems. Structural Safety 25, 263286 (2003)

    Google Scholar 

  3. Albert, R., Albert, I., Nakarado, G.L.: Structural vulnerability of the North American power grid. Phys. Rev. E 69, 025103 (2004)

    Google Scholar 

  4. Albert, R., Jeong, H. and Barabási, A.L.: Diameter of the world-wide web. Nature 401, 130–131 (1999)

    Google Scholar 

  5. Albert, R., Jeong, H. and Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406, 378(2000)

    Google Scholar 

  6. Albert, R. and Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).

    Google Scholar 

  7. Amaral, L. A. N. and Ottino, J. M.: Complex networks. European Physical Journal B, 38, 147–162 (2004).

    Google Scholar 

  8. Amaral, L. A. N. , Scala, A., Barthelemy, M. and Stanley, H.E. : Classes of small-world networks. PNAS 97, 11149–11152 (2000).

    Google Scholar 

  9. Anez,J., De La Barra, T. and Perez, B.: Dual graph representation of transport networks, Trans. Res. B 30, 209–216,(1996).

    Google Scholar 

  10. Arenas, A., Danon, L., Díaz-Guilera, A., Gleiser, P.M. and Guimerá, R.: Community analysis in social networks. Eur. Phys. Journal B, 38 373–380 (2004)

    Google Scholar 

  11. Arulselvan, A., Commander, C.W., Elefteriadou, L. and Pardalos, P.M.: Detecting critical nodes in sparse graphs. Computers and Operations Research 36, (7), 2193–2200 (2009).

    Google Scholar 

  12. Bao, Z.J., Cao, Y.J., Ding, L.J. and Wang, G.Z.: Comparison of cascading failures in small-world and scale-free networks subject to vertex and edge attacks. Physica A, 388, 4491–4498 (2009)

    Google Scholar 

  13. Barabási, A. L. and Albert, R.: Emergence of scaling in random networks, Science 286, 509–512 (1999)

    Google Scholar 

  14. Barefoot, C. A., Entringer, R. and Swart, H.: Vulnerability in graphs a comparative survey. J.Comb.Math.and Comb.Comput. 1, 13–22 (1987)

    Google Scholar 

  15. Barrat, A. and Weigt, M.: On the properties of small-world network models, Eur. Phys. J. B., vol. 13, 547–560 (2000).

    Google Scholar 

  16. Bar-Yam, Y.: Dynamics of Complex Systems. Addison-Wesley, 1997.

    Google Scholar 

  17. Berdica, K.: An introduction to road vulnerability: what has been done, is done and should be done. Transport Policy 9 (2), 117–127 (2002).

    Google Scholar 

  18. Biggs, N.: Algebraic Graph Theory, 2nd Edition. Cambridge University Press, 1993.

    Google Scholar 

  19. Boccaletti, S., Bianconi, G., Criado, R., Y., Del Genio, C.I., Gómez-Gardeñes, J. , Romance, M., Sendiña-Nadal, I. Wang, Z., Zanin, M.: The Structure and Dynamics of Multilayer Networks. Phys. Rep, 544, 1, (2014).

    Google Scholar 

  20. Boccaletti, S., Buldú, J., Criado, R., Flores, J., Latora, V., Pello, J., Romance, M.: Multi-scale Vulnerability of Complex Networks. Chaos 17, 043110 (2007)

    Google Scholar 

  21. Boccaletti, S., Criado, R., Pello, J., Romance, M., Vela-Pérez, M.: Vulnerability and fall of efficiency in complex networks: A new approach with computational advantages. Int. J. Bifurcat. Chaos 19 (2),727–735(2009).

    Google Scholar 

  22. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D. U. : Complex Networks: Structure and Dynamics. Phys. Rep, 424, 175 (2006).

    Google Scholar 

  23. Boguña, M., Serrano, M.: Generalized percolation in random directed networks. Phys. Rev. E 72, 016106 (2005).

    Google Scholar 

  24. Bollobás, B.: Random graphs, 2nd edn. Cambridge University Press, Cambridge, 2001.

    Google Scholar 

  25. Bonacich, P.: Factoring and weighing approaches to status scores and clique information. J. Math. Soc. 2, 113 (1972)

    Google Scholar 

  26. Bonacich, P., Lloyd, P.: Eigenvectors-like measures of centrality for asymmetric relations. Soc. Netw. 23, 191 (2001)

    Google Scholar 

  27. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. 30, 107 (1998).

    Google Scholar 

  28. Chapela,V.: Tips for Managing Intentional Risk, ISACA, 11 (2011), available on-line at http://www.isaca.org/About-ISACA/-ISACA-Newsletter/

  29. Chen, N., Litvak, N. and Olvera-Cravioto, M.: “PageRank in Scale-Free Random Graphs”. LNCS 8882, pp 120–131, Springer (2014).

    Google Scholar 

  30. Chung, F.R.K.: Spectral Graph Theory. Conference Board of the Mathematical Sciences, AMS, Providence, RI, 92 (1997)

    Google Scholar 

  31. CIGTR, URJC: PageRank de aristas y su aplicación al cálculo de la accesibilidad, ITechnical Report (2014).

    Google Scholar 

  32. Cohen, R., Erez, K., ben-Avraham, D., Havril, S.: Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85 (21), 4626 (2000)

    Google Scholar 

  33. Cohen, R., Erez, K., ben-Avraham, D., Havril, S.: Breakdown of the internet under intentional attacks. Phys. Rev. Lett. 86 (16), 3682 (2001)

    Google Scholar 

  34. Criado, R., Romance, M.: “Structural Vulnerability and Robustness in Complex Networks: Different Approaches and Relationships Between them”. Handbook of Optimization in Complex Networks, pp. 3–36, Springer, 2012.

    Google Scholar 

  35. Criado, R., Flores, J., González-Vasco, M.I., Pello, J.: Locating a leader node on a complex network. J. Comput. Appl. Math. 204, 10 (2007)

    Google Scholar 

  36. Criado, R., Flores, J., García del Amo, A., Romance, M.: Analytical relationships between metric and centrality measures of a network and its dual. J. Comput. Appl. Math. 235, 1775–1780 (2011)

    Google Scholar 

  37. Criado, R., Flores, J., García del Amo, A., Romance, M.: Structural properties of the line-graphs associated to directed networks. Netw. and Heterog. Media 7, 3, 373–384 (2012).

    Google Scholar 

  38. Criado, R., Flores, J., García del Amo, A., Gómez-Gardeñes, J., Romance, M.: A mathematical model for networks with structures in the mesoscale. Int. J. of Computer Math. 89, 3, 291–309 (2012).

    Google Scholar 

  39. Criado, R., García del Amo, A., Hernández-Bermejo, B., Romance, M.: New results on computable efficiency and its stability for complex networks. J. Comput. Appl. Math. 192, 59 (2006).

    Google Scholar 

  40. Criado, R., Flores, J., Hernández-Bermejo, B., Pello, J., Romance, M.: Effective measurement of network vulnerability under random and intentional attacks. J. Math. Model. Alg. 4, 307–316 (2005)

    Google Scholar 

  41. Criado, R., Pello, J., Romance, M., Vela-Pérez, M.: A node-based multiscale vulnerability of complex networks. Int. J. Bifurcat. Chaos 19 (2),703–710 (2009).

    Google Scholar 

  42. Crucitti, P., Latora, V., Marchiori, M., Rapisarda, A.: Efficiency of Scale-Free Networks: Error and Attack Tolerance. Physica A, 320, 622 (2003)

    Google Scholar 

  43. Crucitti, P., Latora V., Marchiori, M.: Error and attack tolerance of complex networks. Physica A 340 388–394 (2004)

    Google Scholar 

  44. Crucitti, P., Latora, V., Porta, S., “Centrality in networks of urban streets”, Chaos 16, 015113, (2006).

    Google Scholar 

  45. Crucitti, P., Latora, V., Porta, S., “Centrality Measures in Spatial Networks of Urban Streets”, Phys. Rev. E 73, 036125, (2006).

    Google Scholar 

  46. Crucitti, P., Latora, V., Porta, S.,“Network analysis of urban streets”, Physica A 369, 0411241, (2006).

    Google Scholar 

  47. Csató, L.: Distance-based accessibility indices. ArXiv 1507.01465 (2015).

    Google Scholar 

  48. Cvetkovic, D., Doob, M., Gutman, I., Torgasev, A.: Recent Results in the Theory of Graph Spectra, North-Holland, Amsterdam, 1988.

    Google Scholar 

  49. Cvetkovic, D.M., Doob, M., Sachs, H.: Spectra of Graphs, Theory and Applications, 3rd edn. Johann Ambrosius Barth, Heidelberg, 1995

    Google Scholar 

  50. Cvetkovic, D., Rowlinson, P. S. K. Simic: Eigenspaces of Graphs. Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  51. De Domenico, M., Solé, A., Gómez, S. and Arenas, A. : Random Walks on Multiplex Networks, ArXiv 1306.0519 (2013).

    Google Scholar 

  52. Dekker, A.H., Colbert, B.D.: Network Robustness and Graph Topology. Proc. ACSC04, the 27th Australasian Computer Science Conference (18–22 January 2004), Dunedin, New Zealand (2004)

    Google Scholar 

  53. Diestel, R.: Graph Theory. Springer-Verlag (2005)

    Google Scholar 

  54. Dorogovtsev, S.N., Mendes J.F.F.: Evolution of networks. Adv. Phys. 51, 10791187 (2002)

    Google Scholar 

  55. Erdös, P. and Rénji, A.: “On random graphs”, Publicationes Mathematicae Debrecen 6, 290–297 (1959).

    Google Scholar 

  56. Erdös, P. and Rénji, A.: “On the evolution of random graphs”, Publications of the Mathematical Institute of the Hungarian Academy of Sciences 5, 17–61 (1960).

    Google Scholar 

  57. Evans, T.S., Lambiotte, R.: Line graphs, link partitions, and overlapping communities, Phys.Rev. E 80 (2009), 016105.

    Google Scholar 

  58. Evans, T.S., Lambiotte, R.: Line graphs of weighted networks for overlapping communities, Eur. Phys. J. B 77 (2010), 265–272.

    Google Scholar 

  59. Everett, M.G. and Borgatti, S.P.: The centrality of groups and classes. The Journal of Mathematical Sociology 23, 3, 181–201 (1999) .

    Google Scholar 

  60. Fiedler, M.: Algebraic Connectivity of Graphs. Czech. Math. J. 23, 298 (1973)

    Google Scholar 

  61. Fontoura Costa, L. et al: Characterization of Complex Networks: A Survey of measurements. Advances in Physics, 56, 167–242 (2007)

    Google Scholar 

  62. Fontoura Costa, L. et al: Analyzing and Modeling Real-World Phenomena with Complex Networks: A Survey of Applications. arXiv:0711.3199v3 [physics.soc-ph] (2008)

    Google Scholar 

  63. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41, 1977.

    Google Scholar 

  64. Gago, S.: Spectral Techniques in Complex Networks. Selectec Topics on Applications of Graph Spectra, Matematicki Institut SANU, Beograd, 14 (22), 63–84, 2011.

    Google Scholar 

  65. Gibbons, A.: Algorithmic Graph Theory. Cambridge University Press (1985)

    Google Scholar 

  66. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)

    Google Scholar 

  67. Godsil, C.D. and Royle, G.: Algebraic Graph Theory. Springer, 2001.

    Google Scholar 

  68. Goh, K.-I. Kahng, B. and Kim, D.: Spectra and eigenvectors of scale-free networks. Physical Review E, 64:051903 (2001)

    Google Scholar 

  69. Goldshtein, V., Koganov, G.A and Surdutovich, G.I.: Vulnerability and hierarchy of complex networks. cond-mat/0409298 (2004)

    Google Scholar 

  70. Gross, CJ. L., Yellen, J. (eds.): Handbook of graph theory. CRC Press, New Jersey (2004).

    Google Scholar 

  71. Guellner, C. and Costa, C.H.: A Framework for Vulnerability Management in Complex Networks. IEEE Ultra Modern Telecommunications, ICUMT.09, 1–8 (2009).

    Google Scholar 

  72. Harary, F.: Graph Theory. Perseus, Cambridge, MA. (1995).

    Google Scholar 

  73. Hemminger, R. L. and Beinek, L. W., “Line graphs and line digraphs, Selected Topics in Graph Theory (W. B. Lowell and R. J. Wilson, eds.,” Academic Press, New York,, (1978) pp. 271–305.

    Google Scholar 

  74. Holme, P., Beom Jun Kim, Chang No Yoon, Seung Kee Han: Attack vulnerability of complex networks. Phys. Rev. E 65, 056109 (2002)

    Google Scholar 

  75. Holmgren, J.: Using graph models to analyze the vulnerability of electric power networks. Risk Anal. 26 (4), (2006)

    Google Scholar 

  76. Hua, M-B., Jianga, R., Wang,R., Wu, Q-S. “Urban traffic simulated from the dual representation: Flow, crisis and congestion” Physics Letters A 3732007–2011, (2009).

    Google Scholar 

  77. Husdal, J.: Reliability and vulnerability versus cost and benefits. Proc. 2nd Int. Symp. Transportation Network Reliability (INSTR). Christchurch, New Zealand,180–186 (2004).

    Google Scholar 

  78. Ishakian, V., Erdös, D., Terzi, E. and Bestavros, A.: A framework for the evaluation and management of network centrality. Proc. of the 2012 SIAM International Conference of Data Mining, 427–438 (2012).

    Google Scholar 

  79. Jamakovic, A., Van Mieghem, P.: On the robustness of complex networks by using the algebraic connectivity. NETWORKING 2008, LCNS 4892, 183–194, 2008.

    Google Scholar 

  80. Jamakovic, A., Uhlig, S.: On the relationship between the algebraic connectivity and graphs robustness to node and link failures, Proc. 3rd EURO-NGI Conf. Next Generation Internet Network, Trondheim, Norway, 96–102 (2007).

    Google Scholar 

  81. Kivela, M., Arenas, A., Bathelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. of Complex Net. 2 203–271, (2014).

    Google Scholar 

  82. Langville, A.N. and Meyer C.D.: Google’s PageRank and Beyond: The Science of Search Engine Ranks, Princeton Univ. Press, Princeton (2006).

    Google Scholar 

  83. Latora, V., Marchiori, M.: Efficient Behavior of Small-World Networks. Phys. Rev. Lett. 87, 198701 (2001).

    Google Scholar 

  84. Latora, V., Marchiori, M.: How the science of complex networks can help developing strategies against terrorism. Chaos Solitons Fract. 20, 69 (2004)

    Google Scholar 

  85. Latora, V., Marchiori, M.: Vulnerability and protection of critical infrastructures. Phys Rev E 71,015103 (2004)

    Google Scholar 

  86. Latora, V., Marchiori, M.: A measure of centrality based on the network efficiency. New J. Phys. 9, 188 (2007)

    Google Scholar 

  87. Latora, V., Marchiori, M.: Economic small-world behavior in weighted networks. The European Physical Journal B 32, 249–263 (2003).

    Google Scholar 

  88. Mcafee (Report): Net Losses: Estimating the Global Cost of Cybercrime. Economic impact of cybercrime II, Center for Strategic and International Studies, June 2014.

    Google Scholar 

  89. Menger, K.: Zur allgemeinen Kurventheorie. Fund. Math. 10, 96–115, (1927).

    Google Scholar 

  90. Mehta, M. L.: Random Matrices. Academic Press, 1991.

    Google Scholar 

  91. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000.

    Google Scholar 

  92. Mohar, B.: The Laplacian spectrum of graphs. Graph Theory, Combinatorics and Applications 2, 871–898 (1991)

    Google Scholar 

  93. Mohar, B.: Eigenvalues, diameter and mean distance in graphs. Graphs Combin. 7, 53–64 (1991)

    Google Scholar 

  94. Mohar, B.: Laplace eigenvalues of graphs: a survey. Discrete Mathematics 109, 198, 171–183 (1992)

    Google Scholar 

  95. Mohar, B., Hahn, G., Sabidussi, G.: Some applications of Laplace eigenvalues of graphs. Graph Symmetry: Algebraic Methods and Applications, NATO ASI Ser. C 497, 225–275 (1997)

    Google Scholar 

  96. Moral, S., Chapela, V., Criado, R., Pérez, A., Romance, M.: Efficient algorithms for estimating loss of information in a complex network: Applications to intentional risk analysis, Networks and Heterogeneous Media (AIMS) 10, 1, 195–208, (2015), doi:10.3934/nhm.2015.10.195

    Google Scholar 

  97. Moral, S., Chapela, V., Criado, R., Pérez, A., Romance, M.: Towards a Complex Networks’ based Model for Intentional Technological Risk Analysis, Int.J.Comp.Syst.Sci. 3(1) (2013), 45–54.

    Google Scholar 

  98. Motter, A.E., Lai, Y-C.: Cascade-based attacks on complex networks. Phys. Rev. E 66, 065102(R)(2002)

    Google Scholar 

  99. Motter, A.E.: Cascade control and defense in complex networks. Phys. Rev. Lett. 93,098701 (R)(2004)

    Google Scholar 

  100. Norris, J.R.: Markov Chains, Cambridge University Press, New York, 1997.

    Google Scholar 

  101. Newman, M.E.J.: Scientific collaboration networks I. Network construction and fundamental results. Phys. Rev. E 64, 016131 (2001).

    Google Scholar 

  102. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)

    Google Scholar 

  103. Newman, M.E.J.: Networks: An Introduction. Oxford Univ. Press, Oxford, 2010

    Google Scholar 

  104. Newman, M.E.J., Barabási, A.L., Watts, D.J.: The Structure and Dynamics of Networks. Princeton Univ. Press, Princeton, New Jersey (2006)

    Google Scholar 

  105. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006)

    Google Scholar 

  106. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Google Scholar 

  107. Noh, J. D., Rieger, H. : Random walks on complex networks. Phys. Rev. Lett. 92, 118701 (2004).

    Google Scholar 

  108. Page, L., Brin, S., Motwani, R. ,Winograd, T.: The PageRank citation ranking: Bringing order to the web, Technical Report, Standford InfoLab, 1999.

    Google Scholar 

  109. Pedroche, F.: Métodos de cálculo del vector PageRank, Bol. Soc. Esp. Mat. Apl. 39 (2007), 7–30.

    Google Scholar 

  110. Porta, S., Crucitti, P., Latora, V.: The network analysis of urban streets: a primal approach, Environment and Planning B: Planning and Design 33 (5),(2006),705–725.

    Google Scholar 

  111. Praprotnik, S., Batagelj, V.: Spectral centrality measures in temporal networks. Ars Mathematica Contemporanea 11, 11–33, (2016) (available at http://amc-journal.eu) .

  112. Romance, M., Solá, L., Flores, J., García, E., García del Amo, A. and Criado, R.: A Perron-Frobenius theory for block matrices and tensor calculus of multiplex networks, Chaos, Solitons and Fractals 72 (2015) 77–89.

    Google Scholar 

  113. Rosato, V. and Tiriticco,F.: Growth mechanisms of the AS-level internet network. Europhysics Letters, 66(4):471–477 (2004)

    Google Scholar 

  114. Rudnick, J., and Gaspari, G.: Elements of the Random Walk, Cambridge University Press, Cambridge, 2004.

    Google Scholar 

  115. Seary, A. J. and Richards, W.D.: Spectral methods for analyzing and visualizing networks: an introduction. In Dynamic Social Network Modeling and Analysis, pages 209–228. National Academy Press, 2003.

    Google Scholar 

  116. Sinatra, R., Gómez-Gardeñes, J., Lambiotte, R., Nicosia, V. and Latora, V.: Maximal-Entropy Random Walks in Complex Networks with Limited Information, PRE 83 (2011), 030103(R).

    Google Scholar 

  117. Solá L. and Romance, M.: Multiplex PageRank on monoplex and multiplex network, Preprint (2015), 1–12.

    Google Scholar 

  118. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Google Scholar 

  119. Thay M. T. and Pardalos P.M. (Eds): Handbook of Optimization in Complex Networks. Springer Optimization and Its Applications 58, Springer, 2010.

    Google Scholar 

  120. Tetali, P.: Random walks and the effective resistance of networks. J. Theor. Probab. 4, 101–109 (1991).

    Google Scholar 

  121. Trpevski, D., Smilkov, D., Mishkovski, I. and Kocarev, L.: Vulnerability of labeled networks. Physica A 389, 23, 5538–5549(2010)

    Google Scholar 

  122. Van Mieghem, P.: Performance Analysis of Communications Networks and Systems. Cambridge University Press, Cambridge, 2006.

    Google Scholar 

  123. Veremyev, A., Prokopyev, O.A., Pasiliao, E.L.: An integer programming framework for critical elements detection in graphs. Journal of Combinatorial Optimization 28, 1, 233–273 (2014).

    Google Scholar 

  124. Veremyev, A., Prokopyev, O.A., Pasiliao, E.L.: Critical Nodes for Distance-Based Connectivity and Related Problems in Graphs. Networks (2015), DOI: 10.1002/net.21622.

    Google Scholar 

  125. Vogiatzis, C., Veremyev, A., Pasiliao, E.L., Pardalos, P.M.: An integer programming approach for finding the most and the least central cliques. Optimization Letters 9 (4), 615–633 (2014).

    Google Scholar 

  126. Volchenkov, D., and Lanchard, Ph., Transport networks revisited: Why dual graphs?, arXiv0710.5494.

    Google Scholar 

  127. Walteros, J.L. and Pardalos, P.M.: “Selected topics in critical element detection”. Springer Optimization and Its Applications 71, pp. 9–36, 2012.

    Google Scholar 

  128. Wang,Y., Chakrabarti, D., Wang, C., Faloutsos,C.: Epidemic spreading in real networks: An eigenvalue viewpoint. 22nd Symp. Reliable Distributed Computing, Florence, Italy, Oct. 68, 2003.

    Google Scholar 

  129. Wang, X.F. and Chen, G.: Complex networks: small-world, scale-free and beyond. Circuits and Systems Magazine, IEEE, vol 3, 1, 6–20 (2003).

    Google Scholar 

  130. Wasserman, S., Faust, K.: Social Networks Analysis. Cambridge Univ. Press (1994).

    Google Scholar 

  131. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998).

    Google Scholar 

  132. Wehmuth, K. et al: On the joint dynamics of network diameter and spectral gap under node removal. Latin-American Workshop on Dynamic Networks, Buenos Aires (2010)

    Google Scholar 

  133. Whitney,S. H. , “Congruent graphs and the connectivity of graphs”, American Journal of Mathematics 54 (1), 150–168 (1932), doi:10.2307/2371086, JSTOR 2371086.

    Google Scholar 

  134. Wilson, R. J.: Introduction to graph theory, vol. 111. Academic Press New York, 1972.

    Google Scholar 

  135. Wu, J., Deng, H. Z., Tan, Y. J. and Zhu, D. Z.: Vulnerability of complex networks under intentional attack with incomplete information. Journal of Physics A: Mathematical and Theoretical, 40, 11, 2665–2671 (2007).

    Google Scholar 

  136. Yang, S.-J.: Exploring complex networks by walking on them. Phys. Rev. E 71, 016107 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Chapela, V., Criado, R., Moral, S., Romance, M. (2015). Mathematical Model I: Static Intentional Risk. In: Intentional Risk Management through Complex Networks Analysis. SpringerBriefs in Optimization. Springer, Cham. https://doi.org/10.1007/978-3-319-26423-3_5

Download citation

Publish with us

Policies and ethics