Skip to main content

Facing up Social Activity Recognition Using Smartphone Sensors

Part of the Lecture Notes in Computer Science book series (LNISA,volume 9454)


In the last years context awareness has become a reality in real-world applications. However, building comprehensive context recognition systems which are able to recognize both low and high-level context information remains a challenge. In this paper, we discuss environment recognition as a means to address the issue of recognizing a high-level user context, social activity. In many countries, bars, pubs and similar establishments are one of the main places where social engagement takes place, and thus we propose recognizing these types of environments using data collected from mobile device sensors as a proxy for inferring social activity. For this purpose, we discuss the common defining characteristics of these establishments and the sensors we will use to recognize them. After that, we introduce the design of our system. Finally, we present the preliminary evaluation carried out to assess the validity of our proposal.


  • Mobile sensing
  • Multimodal sensors
  • Environment recognition
  • Activity recognition
  • Context awareness

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-26401-1_11
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-26401-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 1.


  1. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  2. Choudhury, T., Consolvo, S., Harrison, B., Hightower, J., Lamarca, A., Legrand, L., Rahimi, A., Rea, A., Bordello, G., Hemingway, B., Klasnja, P., Koscher, K., Landay, J., Lester, J., Wyatt, D., Haehnel, D.: The mobile sensing platform: an embedded activity recognition system. IEEE Pervasive Comput. 7(2), 32–41 (2008)

    CrossRef  Google Scholar 

  3. Han, M., Vinh, L.T., Lee, Y.K., Lee, S.: Comprehensive context recognizer based on multimodal sensors in a smartphone. Sensors 12(9), 12588 (2012).

  4. Karatzoglou, A., Smola, A., Hornik, K., Zeileis, A.: kernlab - an S4 package for kernel methods in R. J. Stat. Softw. 11(9), 1–20 (2004).

  5. Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., The R Core Team, Benesty, M., Lescarbeau, R., Ziem, A., Scrucca., L.: caret: Classification and regression training (2015)., R package version 6.0-41

  6. Lane, N., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.: A survey of mobile phone sensing. IEEE Commun. Mag. 48(9), 140–150 (2010)

    CrossRef  Google Scholar 

  7. Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2(3), 18–22 (2002).

  8. Lu, H., Pan, W., Lane, N.D., Choudhury, T., Campbell, A.T.: Soundsense: Scalable sound sensing for people-centric applications on mobile phones. In: Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services, MobiSys 2009, pp. 165–178. ACM, New York (2009).

  9. Lukowicz, P., Pentland, A.S., Ferscha, A.: From context awareness to socially aware computing. IEEE Pervasive Comput. 11(1), 32–41 (2012)

    CrossRef  Google Scholar 

  10. Ma, L., Smith, D., Milner, B.: Environmental noise classification for context-aware applications. In: Mařík, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 360–370. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  11. Parviainen, J., Bojja, J., Collin, J., Leppnen, J., Eronen, A.: Adaptive activity and environment recognition for mobile phones. Sensors 14(11), 20753 (2014).

  12. Peltonen, V., Tuomi, J., Klapuri, A., Huopaniemi, J., Sorsa, T.: Computational auditory scene recognition. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2002, vol. 2, pp. 1941–1944. IEEE (2002)

    Google Scholar 

  13. Pohlert, T.: PMCMR: Calculate Pairwise Multiple Comparisons of Mean Rank Sums (2015)., R package version 1.1

  14. Räsänen, O., Leppänen, J., Laine, U.K., Saarinen, J.P.: Comparison of classifiers in audio and acceleration based context classification in mobile phones. In: 19th European Signal Processing Conference, EUSIPCO 2011, Barcelona, Spain, pp. 946–950, August 2011.

  15. Weihs, C., Ligges, U., Luebke, K., Raabe, N.: klaR analyzing german business cycles. In: Baier, D., Decker, R., Schmidt-Thieme, L. (eds.) Data Analysis and Decision Support, pp. 335–343. Springer-Verlag, Heidelberg (2005)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Pablo Curiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Curiel, P., Pretel, I., Lago, A.B. (2015). Facing up Social Activity Recognition Using Smartphone Sensors. In: García-Chamizo, J., Fortino, G., Ochoa, S. (eds) Ubiquitous Computing and Ambient Intelligence. Sensing, Processing, and Using Environmental Information. UCAmI 2015. Lecture Notes in Computer Science(), vol 9454. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26400-4

  • Online ISBN: 978-3-319-26401-1

  • eBook Packages: Computer ScienceComputer Science (R0)