Advertisement

Facing up Social Activity Recognition Using Smartphone Sensors

  • Pablo Curiel
  • Ivan Pretel
  • Ana B. Lago
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9454)

Abstract

In the last years context awareness has become a reality in real-world applications. However, building comprehensive context recognition systems which are able to recognize both low and high-level context information remains a challenge. In this paper, we discuss environment recognition as a means to address the issue of recognizing a high-level user context, social activity. In many countries, bars, pubs and similar establishments are one of the main places where social engagement takes place, and thus we propose recognizing these types of environments using data collected from mobile device sensors as a proxy for inferring social activity. For this purpose, we discuss the common defining characteristics of these establishments and the sensors we will use to recognize them. After that, we introduce the design of our system. Finally, we present the preliminary evaluation carried out to assess the validity of our proposal.

Keywords

Mobile sensing Multimodal sensors Environment recognition Activity recognition Context awareness 

References

  1. 1.
    Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  2. 2.
    Choudhury, T., Consolvo, S., Harrison, B., Hightower, J., Lamarca, A., Legrand, L., Rahimi, A., Rea, A., Bordello, G., Hemingway, B., Klasnja, P., Koscher, K., Landay, J., Lester, J., Wyatt, D., Haehnel, D.: The mobile sensing platform: an embedded activity recognition system. IEEE Pervasive Comput. 7(2), 32–41 (2008)CrossRefGoogle Scholar
  3. 3.
    Han, M., Vinh, L.T., Lee, Y.K., Lee, S.: Comprehensive context recognizer based on multimodal sensors in a smartphone. Sensors 12(9), 12588 (2012). http://www.mdpi.com/1424-8220/12/9/12588
  4. 4.
    Karatzoglou, A., Smola, A., Hornik, K., Zeileis, A.: kernlab - an S4 package for kernel methods in R. J. Stat. Softw. 11(9), 1–20 (2004). http://www.jstatsoft.org/v11/i09/
  5. 5.
    Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., The R Core Team, Benesty, M., Lescarbeau, R., Ziem, A., Scrucca., L.: caret: Classification and regression training (2015). http://CRAN.R-project.org/package=caret, R package version 6.0-41
  6. 6.
    Lane, N., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.: A survey of mobile phone sensing. IEEE Commun. Mag. 48(9), 140–150 (2010)CrossRefGoogle Scholar
  7. 7.
    Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2(3), 18–22 (2002). http://CRAN.R-project.org/doc/Rnews/
  8. 8.
    Lu, H., Pan, W., Lane, N.D., Choudhury, T., Campbell, A.T.: Soundsense: Scalable sound sensing for people-centric applications on mobile phones. In: Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services, MobiSys 2009, pp. 165–178. ACM, New York (2009). http://doi.acm.org/10.1145/1555816.1555834
  9. 9.
    Lukowicz, P., Pentland, A.S., Ferscha, A.: From context awareness to socially aware computing. IEEE Pervasive Comput. 11(1), 32–41 (2012)CrossRefGoogle Scholar
  10. 10.
    Ma, L., Smith, D., Milner, B.: Environmental noise classification for context-aware applications. In: Mařík, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 360–370. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  11. 11.
    Parviainen, J., Bojja, J., Collin, J., Leppnen, J., Eronen, A.: Adaptive activity and environment recognition for mobile phones. Sensors 14(11), 20753 (2014). http://www.mdpi.com/1424-8220/14/11/20753
  12. 12.
    Peltonen, V., Tuomi, J., Klapuri, A., Huopaniemi, J., Sorsa, T.: Computational auditory scene recognition. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2002, vol. 2, pp. 1941–1944. IEEE (2002)Google Scholar
  13. 13.
    Pohlert, T.: PMCMR: Calculate Pairwise Multiple Comparisons of Mean Rank Sums (2015). http://CRAN.R-project.org/package=PMCMR, R package version 1.1
  14. 14.
    Räsänen, O., Leppänen, J., Laine, U.K., Saarinen, J.P.: Comparison of classifiers in audio and acceleration based context classification in mobile phones. In: 19th European Signal Processing Conference, EUSIPCO 2011, Barcelona, Spain, pp. 946–950, August 2011. http://www.eurasip.org/Proceedings/Eusipco/Eusipco2011/papers/1569422049.pdf
  15. 15.
    Weihs, C., Ligges, U., Luebke, K., Raabe, N.: klaR analyzing german business cycles. In: Baier, D., Decker, R., Schmidt-Thieme, L. (eds.) Data Analysis and Decision Support, pp. 335–343. Springer-Verlag, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Deusto Institute of Technology - DeustoTech, MORElab – Envisioning Future InternetUniversity of DeustoBilbaoSpain

Personalised recommendations